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19a Many problems in the literature such as the consensus and distributed

firing squad problems require processors in a synchronous system to per-

form some action simultaneously, yet each problem is solved in each model

of processor failure using a different algorithm. We give a single algorithm

scheme with which we can transform specifications of such problems directly

into protocols that are optimal in a very strong sense: these protocols are

optimal in all runs, which means that given any possible input to the system

and any possible faulty processor behavior, these protocols are guaranteed tb

perform the simultaneous action as soon as any other protocol would do so

in the same context. In contrast, most other protocols in the literature are

optimal only in the worst case run. This transformation is performed in two

steps. In the first step, we extract directly from the problem specification a

high-level protocol programmed using explicit tests for common knowledge.
In the second step, we carefully analyze when facts become common knowl-
edge, thereby providing a method of efficiently implementing these protocols
in the crash failure model and several variants of the omissions failure model.
In the generalized omissions model, however, our analysis shows that testing
for common knowledge is NP-hard. Given the close correspondence between
common knowledge and simultaneous actions, we are able to show that no
optimal protocol for any such problem can be computationally efficient in
this model. Our analysis exposes many subtle differences between the failure
models, including the precise point at which this gap in complexity occurs.
This work shows how knowledge can be effectively used in protocol design
and in proving nontrivial lower bounds on computational complexity.

In areas like cryptography, probability often plays a role in understanding
interesting systems of agents, yet the standard definition of knowledge used
above ignores issues of probability. Recent papers have shown that more than
one definition of probabilistic knowledge is reasonable, but they do not tell
us how to make the choice between these definitions. We clarify the issues
involved in making the right choice. We show that no single definition is ap-
propriate in all contexts. Given a particular context, however, we show how
to construct the most appropriate definition for that context, where "most
appropriate" is made precise in terms of betting games against an adversary.
Vie show how probabilistic knowledge can be used to specify coordinated
attack, and how different definitions of probabilistic knowledge result in dif-
ferent levels of guarantees by the problem statement. Another important
aspect of cryptography is the fact that an agent's knowledge (of the contents
of a message, for example) is limited by the bounds on its computational
power, yet the standard definition of knowledge ignores computational com-
plexity, in addition to probability. We show how such issues in cryptography
motivate the definition of practical knowledge, and then turn to the problem
of using probabilistic and practical knowledge to reason about cryptography.

While the intuition underlying a zero knowledge proof system [GMR89]
is that 1o "knowledge" is leaked by the prover to the verifier, researchers
are just beginning to analyze such cryptographic systems in terms of formal
notions of knowledge. We show how the definition of an interactive proof
s3/stem can be characterized directly in terms of practical knowledge. Using
this notion of know' Ic wc lroray capture an-d pro;c ti. :n4:ut

the prover does not leak any knowledge of any fact (other than the fact being

proven) during a zero knowledge proof. We extend this result to show that the
prover does not leak any knowledge of how to compute any information (such
as the factorization of a number) during a zero knowledge proof. Finally,
we show how our knowledge-theoretic characterization of interictive proof
systems can be used to prove simple properties of such systems. This work
represents a first step toward the ultimate goal of being able to reason about
cryptographic systens directly in terms of knowledge, reasoning at a higher
semantic level than the operational cryptographic definitions themselves.
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Abstract A-f
Understanding systems of agents that interact in some way is fundamental

to many areas of science, including philosophy, linguistics, economics, game
theory, logic, artificial intelligence, robotics, and distributed computing. As
we try to understand these systems, we often find ourselves reasoning (at
least informally) about the knowledge these agents have about other agents.
Recent work has shown that these informal notions of knowledge can be
made precise in the context of computer science. In this thesis, we pro-
vide convincing evidence that reasoning in terms of knowledge can lead to
general, unifying results about distributed computation, and we extend the
standard definitions of knowledge and apply them in new contexts such as
cryptography.

Many problems in the literature such as the consensus and distributed
firing squad problems require processors in a synchronous system to per-
form some action simultaneously, yet each problem is solved in each model
of processor failure using a different algorithm. We give a single algorithm
scheme with which we can transform specifications of such problems directly
into protocols that are optimal in a very strong sense: these protocols are
optimal in all runs, which means that given any possible input to the system
and any possible faulty processor behavior, these protocols are guaranteed to
perform the simultaneous action as soon as any other protocol would do so
in ihe same context. In con'rasf,, inot olief pfotocols in the -iteratu are
optimal only in the worst case run. This transformation is performed in two
steps. In the first step, we extract directly from the problem specification a
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high-level protocol programmed using explicit tests for common knowledge.
In the second step, we carefully analyze when facts become common knowl-
edge, thereby providing a method of efficiently implementing these protocols
in the crash failure model and several variants of the omissions failure model.
In the generalized omissions model, however, our analysis shows that testing
for common knowledge is NP-hard. Given the close correspondence between
common knowledge and simultaneous actions, we are able to show that no
optimal protocol for any such problem can be computationally efficient in
this model. Our analysis exposes many subtle differences between the failure
models, including the precise point at which this gap in complexity occurs.
This work shows how knowledge can be effectively used in protocol design
and in proving nontrivial lower bounds on computational complexity.

In areas like cryptography, probability often plays a role in understanding
interesting systems of agents, yet the standard definition of knowledge used
above ignores issues of probability. Recent papers have shown that more than
cae definition of probabilistic knowledge is reasonable: but they do not tell
us how to make the choice between these definitions. We clarify the issues
involved in making the right choice. We show that no single definition is ap-
propriate in all contexts. Given a particular context, however, we show how
to construct the most appropriate definition for that context, where "most
appropriate" is made precise in terms of betting games against an adversary.
We show how probabilistic knowledge can be used to specify coordinated
attack, and how different definitions of probabilistic knowledge result in dif-
ferent levels of guarantees by the problem statement. Another important
aspect of cryptography is the fact that an agent's knowledge (of the contents
of a message, for example) is limited by the bounds on its computational
power, yet the standard definition of knowledge ignores computational com-
plexity, in addition to probability. We show how such issues in cryptography
motivate the definition of practical knowledge, and then turn to the problem
of using probabilistic and practical knowledge to reason about cryptography.

While the intuition underlying a zero knowledge proof system [GMR89]
is that no "knowledge" is leaked by the prover to the verifier, researchers
are just beginning to analyze such cryptographic systems in terms of formal
notions of knowledge. We show how the definition of an interactive proof
suster can be characterized directly in terms of practical knowledge. Using
this notion of knowledge, we formally capture and prove the intuition that
the prover does not leak any knowledge of any fact (other than the fact being
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proven) during a zero knowledge proof. We extend this result to show that the
prover does not leak any knowledge of how tc compute any information (such
as the factorization of a number) during a zero knowledge proof. Finally,
we show how our knowledge-theoretic characterization of interactive proof
systems can be used to prove simple properties of such systems. This work
represents a first step toward the ultimate goal of being able to reason about
cryptographic systems directly in terms of knowledge, reasoning at a higher
semantic level than the operational cryptographic definitions themselves.

Keywords: knowledge, distributed systems, Byzantine agreement,
distributed firing squad, crytography, interactive
and zero knowledge proofs

Thesis supervisor: Nancy A. Lynch
Title: Professor
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Chapter 1

Introduction

Today, with the exception of home personal computers, nearly every com-
puter is part of a larger network of computers. A distributed system is a
collection of computers (or processors) that can exchange information by
sending message to one another over some communication network. The
motivation behind building a distributed system may be as simple as the
desire to allow people working at the computers to send messages to each
other, or to share the use of a common printer. A more sophisticated reason -

for doing so is to allow the computers to work together to solve a problem.

Unfortunately, writing the program to solve this problem is often quite
difficult. This is usually because the problem is defined in terms of the global
system state, whereas an individual processor must base its actions solely on
the information recorded in its local state, typically a small fraction of the
information represented by the global state. As a result, a processor must
base its actions on incomplete knowledge of the global state. The limita-
tions of what a processor can know about the global state is a fundamental
source of difficulty when programming distributed systems. It often feels
quite natural, therefore, to reason informally about distributed computation
in terms of what each processor knows. The primary purpose of this work
is to explore the role of knowledge in the design and analysis of distributed
algorithms. We provide some convincing evidence that reasoning in terms of
knowledge can yield general, unifying results about distribuied computation,
and we extend the standard definitions of knowledge in order to apply them
in new contexts.

11



12 CHAPTER 1. INTRODUCTION

1.1 Motivation

One of ihe most well-known examples of informal reasoning about knowledge
when thinking about distributed computing involves the coordinated attack
problem, a formulation by Gray [Gra78] of a folk theorem concerning the
impossibility of coordination in asynchronous systems. This problem is de-
fined as follows. Two generals A and B are on opposite hills with a common
enemy encamped in the valley between them. Neither general has any initial
intention of attacking, but might at some later point decide to attack the en-
emy. The two generals must attack the enemy simultaneously, however, since
a general attacking by himself is certain to be destroyed. Unfortunately, the
only way the two generals can communicate is via messengers who may be
captured enroute by the enemy. The coordinated attack problem is the fol-
lowing: is there a protocol the two generals can follow that guarantees both
generals attack the enemy simultaneously whenever a single general attacks?

Gray shows that the only such protocol is one in which neither general
attacks. To see this, suppose P is a protocol for coordinated attack, and
suppose there is an execution of P in which the two generals attack simulta-
neously after exchanging a total of k messages (that is, after dispatching k
messengers who may or may not have successfully delivered their messages).
Consider the last message m received by either of the generals before the at-
tack. Suppose m was sent by general A, and consider the instant the attack
begins. At this point, A doesn't know whether B has received m or not, but
A has committed himself to the attack in either case. If we consider the exe-
cution differing from the current execution only in that B does not receive m,
therefore, we see that A also attacks. Since P guarantees that both generals
attack whenever a single general attacks, this must be an execution of this
protocol in which the two generals attack simultaneously after exchanging
only k - 1 messages. Continuing by induction, we see that if there is any
execution of P in which the two generals attack, then there is an execution
in which the two generals attack without sending any messages. But if no
messages are sent, then B cannot possibly know of A's intention of attacking,
and a simultaneous attack is impossible. It follows that the only protocols
for coordinated attack are protocols in which neither general attacks!

Th.i ppeI to our int+uionthif+ A does not "know" whether B has re-
ceived m seems quite natural. Roughly speaking, from A's point of view,
there are two global states consistent with the information recorded in A's
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local state: either B has received m, or the messenger carrying m was cap-
tured by the enemy and B has not received m. It follows that A cannot
know that m has been received, since it is possible that B has not received
m. Philosophers have formalized this intuition concerning knowledge as early
as 1962 with Hintikka's possible world semantics for knowledge [Hin62]. The
basic idea is that, in any world or state of affairs, a processor considers a
number of worlds to be possible in addition to the actual world, and that a
processor knows a fact if that fact is true in all worlds the processor considers
possible. In the case of coordinated attack, for example, A considers at least
two worlds possible, one in which m was received and one in which m was
not, and hence cannot be said to know m has been received since one of the
worlds it considers possible is a world in which m has not been received.

An interesting difference between the use of knowledge by philosophers
and by computer scientists, however, is that computer scientists tend to be
interested in the knowledge of groups of processors as well as the knowledge of
individual processors. For example, we can say that everyone knows a fact
if every processor knows the fact according to the definition of knowledge
given above. Another interesting state of knowledge turns out to be the
state of common knowledge. Roughly speaking, a fact is common knowledge
if everyone knows the fact, everyone knows that everyone knows the fact,
and so on. Such definitions of knowledge were first made in the context of
distributed computing by Halpern and Moses [HM84] (and later by others
[CM86, F186, PR85]). In fact, in that paper they give a formal proof of the
impossibility of coordinated attack directly in terms of knowledge. They show
that attaining common knowledge of a certain fact is a necessary condition for
the generals to attack. They go on to prove, using an argument very similar
to the combinatorial argument sketched above, that it is impossible to attain
common knowledge of any nontrivial fact in (asynchronous) systems where
messages (or messengers) can be lost or indefinitely delayed. Combining these
results, it follows that coordinated attack is impossible in such systems.

This argument is a rigorous proof that captures much of the informal
intuition concerning knowledge in the proof sketched above. In distributed
computing, when an algorithm or an impossibility proof is sketched, it is
often the appeal to our intuition concerning knowledge that makes the pre-
sentation understandable. When this sketch is made rigorous, however, it
typically does not make explicit references to any notion of knowledge, and
this intuition that was so helpful before is now buried under complex, combi-
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natorial arguments. Halpern and Moses made a fundamental contribution in
showing that it is possible to make rigorous the intuition concerning knowl-
edge we use informally when reasoning about distribute algorithms. As a
result, they made significant progress toward the goal of making explicit rea-
soning about knowledge a fundamental tool for reasoning about distributed
computation. Part of the motivation for this work is to make further progress
toward this goal.

1.2 Related Work

By far the most common use of knowledge in distributed computation has
been to prove lower bounds and impossibility results. A fundamental tech-
nique for proving lower bounds on message complexity is given by Chandy
and Misra [CM86], where they analyze the communication complexity re-
quired for a processor to reach a given state of knowledge in an asynchronous
system. Roughly speaking, they show that if at time t processor il does not
know a fact V, and at a later time t' processor i.. knows processor ina-I
knows ... processor il does know W, then some sequence (or chain) of mes-
sages from il to i 2 ... to in must have occurred between times t and t'.
Using this result, they show how to prove lower bounds on communication
complexity for various problems such as mutual exclusion and termination
detection. These proofs proceed by showing that a certain number of levels
of "processor i knows processor j knows" are required to solve the problem,
and then appealing to their main theorem to prove that any protocol solving
the problem must result in a chain of messages of a certain length.

Along the same lines, Moses and Roth have recently performed a slightly
more sophisticated analysis in [MR89] where they study the problem of mes-
sage diffusion in asynchronous systems [SFC85], the problem of diffusing a
given message throughout a system in such a way that each processor "con-
sumes" the message exactly once. They show that two levels of knowledge
are sufficient if communication in the system is not required to subside, and
that any subsiding protocol must either attain three levels of knowledge or
use three different types of messages. Lower bounds on message complexity
of such protocols follow immediately.

Similarly, in [Had87], Hadzilacos studies two- and three-phase atomic
commit protocols (used in the context of transaction processing in distributed
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databases) in terms of knowledge, and characterizes the levels of knowledge
required for a site to commit a transaction when following such protocols. As
corollaries of these characterizations, he is able to show that no nonblocking
atomic commit protocol can tolerate communication failures, and he is able
to derive a known lower bound (due to Dwork and Skeen [DS83]) on the
number of messages required to commit a transaction. In the same vein,
Mazer [Maz88, Maz89] performs a knowledge-theoretic analysis of commit
protocols that guarantee that all participants reach a consistent decision on
the commitment of a transaction in systems where failed sites can recover
and rejoin the system.

As with coordinated attack, a numbs" of impossibility results for compu-
tation in asynchronous systems follow froD 'he fact that common knowledge
cannot be attained in such systems. Bui some problems can be solved in
asynchronous systems. This implies that the state of common knowledge is
not relevant in the context of these problems. In order to analyze these prob-
lems, therefore, a number of other definitions of knowledge such as eventual
common knowledge and time-stamped common knowledge have been pro-
posed (see [HM84]). In [PT88], Panangaden and Taylor define the notion
of concurrent common knowledge and show how several problems such as
:nding global snapshots [CL85] of the global system state can be analyzed
in terms of concurrent common knowledge.

Just as important as lower bounds and impossibility results, however, is
the use of knowledge in the actual design of protocols. The motivation for
the use of knowledge in protocol design is that a processor's actions must
depend on what it knows. When a protocol tests for the equality of two
variables, the protocol is implicitly testing for a certain state of knowledge.
In [HF88], Halpern and Fagin generalize the standard notion of a proto-
col by defining knowledge-based protocols, protocols in which a processor's
actions may explicitly depend on tests for knowledge. Such protocols typ-
ically include explicit tests for knowledge, and include statements such as
"if processor 1 knows processor 2 has received message m, then perform
action a." Translating a knowledge-based protocol into a standard pro-
tocol, therefore, requires implementing the embedded tests for conditions
such as "processor 1 knows processor 2 has received m." The advantage
of - - -rvroto ..Jn , -3 P 0U -t n%,JtDfl.f V*%.

high-level description and explanation of a processor's behavior. For ex-
ample, Halpern and Zuck construct in [HZ871 a family of knowledge-based
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protocols solving dhe sequence transmission problem (the problem of trans-
mitting a sequence of bits over an unreliable channel), and show that known
solutions [AUY79, AUWY82, BSW69, Ste76] to the sequence transmission
problem, including the alternating bit protocol, can be viewed as particular
instances of these knowledge-based protocols.

Another example of the useful level of abstraction knowledge-based pro-
tocols provide is the work of Neiger and Toueg in [NT87]. They construct a
broadcast primitive that can be used to cause certain facts to become "com-
mon knowledge" in systems with asynchronous communication, systems in
which true common knowledge cannc . be attained. CoDsequently, using this
tool (and other tools developed in the paper), programmers are able to make
simplifying assumptions when they design protocols by assuming common
knowledge of certain facts is attainable, and are able to implement these
protocols using these broadcast primitives.

The first significant use of knowledge in the design of new protocols, how-
ever, is the work of Dwork and Moses in [DM86]. They study the problem
of simultaneous Byzantine agreement [PSL80, Fis83] in which each processor
starts with an initial input bit, and all processors are required to come to
agreement on a final output bit simultaneously at some later time. They
analyze this problem in synchronous systems with the crash failure model,
a simple failure model in which a processor may crash in the middle of an
execution and never again participate in that execution. They show that in
such systems common knowledge of a certain fact is a necessary and suffi-
cient condition for processors to reach agreement. Using this observation,
they construct a knowledge-based protocol that is optimal in a very strong
sense: this protocol is optimal in all runs, which means that given any pos-
sible input to the system and any possible faulty processor behavior, this
protocol is guaranteed to reach consensus soon as any other protocol would
do so in the same context. In contrast, most protocols in the literature
perform in every run only as well as they do in their worst case run. The
protocol constructed in [DM861 for agreement, for example, can halt in as
few as two rounds of communication, much sooner that most known proto-
cols. They then construct polynomial-time implementations of the tests for
common knowledge embedded in their knowledge-based protocol, resulting
in a standard (optimal) protocol for agreement.
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1.3 Thesis Contributions

The results of Dwork and Moses are the springboard for the first half of this
work. In Chapter 3, we generalize their work in several dimensions.

While Dwork and Moses show how to construct optimal protocols for
agreement, implicit in their work is a technique for constructing optimal
protocols for many other problems such as the distributed firing squad prob-
lem, problems in which processors are required to choose and perform the
same action simultaneously. In order to make this precise, we define the gen-
eral class of simultaneous choice problems. Problems in this class, including
the agreement and distributed firing squad problems, require processors to
choose and perform a simultaneous action, an action (such as deciding on
the value of an output bit) that must be performed simultaneously by all
processors wheuever it is performed by any processor. In the literature, each
combination of a simultaneous choice problem and a failure model results in
a different algorithm. In contrast, we give a single ulgorithm scheme with
which we can trar.sform specifications of such problems directly into protocols
that are optimal in all runs, in the sense of Dwork and Moses, in a number
of failure models. This transformation is performed in two steps. In the first
step, we extract directly from the problem specification a high-level proto-
col programmed using explicit tests for common knowledge. In the second
step, we carefully analyze when facts become common knowledge, resulting
in efficient implementations of the tests for common knowledge embedded in
this high-level protocol, and consequently providing a method for efficiently
implementing these protocols.

The high-level, knowledge-based protocols we construct are similar to the
protocol given by Dwork and Moses. The technical analysis we perform in
order to implement the embedded tests for common knowledge, however,
is quite different. The analysis of Dwork and Moses makes strong use of
particular properties of the crash failure model and does not extend to more
complicated failure models. In contrast, our analysis applies to both the crash
failure model and several variants of the omissions failure model, a model in
which faulty processors may intermittently fail to send messages, instead of
crashing at some point and falling silent from then on. Interestingly, our
techniques for implementing tests for common knowledge are purely combi-
natorial. As a result, our work is a nice example of how knowledge-theoretic
and combinatorial reasoning can be used together in protocol design: think-
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ing in terms of knowledge allows us to isolate the heart of a problem, which
can in turn be solved using combinatorial methods.

Given that similar knowledge-based protocols yield optimal protocols for
agreement in both the crash and omissions failure models, one might hope
that the same protocol would work in even more malicious models like the
Byzantine model where faulty processors are allowed to behave in an arbi-
trary fashion. We are able to show, however, that this is quite unlikely. We
consider a variant of the omissions model called the generalized omissions
model in which faulty processors may intermittently fail both to send and to
receive messages. In this model, we show that the same knowledge-based pro-
tocol is an optimal protocol for performing simultaneous actions, but that
implementing tests for common knowledge in this model is suddenly NP-
hard! In fact, using the close correspondence between common knowledge
and the performance of simultaneous actions, we are able to show that any
protocol for performing simultaneous actions in this model that is optimal
in all runs must require processors to perform NP-hard computations. This
means, for example, that there can be no optimal, polynomial-time protocol
for agreement, assuming P#NP. Our analysis exposes many subtle differ-
ences between the failure models we consider, including the precise point at
which this gap in complexity occurs. This work shows how knowledge can be
effectively used in protocol design, as does the work of Dwork and Moses, but
it also shows how knowledge can be used to prove nontrivial lower bounds
on computational complexity.

One consequence of this work is that it shows for the first time that
definitions of knowledge must take computational complexity into account
even when analyzing simple problems in relatively simple failure models,
and even when issues of computational complexity have not been introduced
artificially via cryptographic assumptions. In general, however, there are
many situations in which the standard definition of knowledge does not seem
appropriate. One of the important contributions of this thesis is to improve
our understanding of how to define notions of knowledge for use in these
contexts. This is the topic of the second half of this thesis.

One context in which the standard definition of knowledge does not seem
particularly appropriate is the context of probabilistic protocols. Such pro-
tocols are quite important in computer science since there are a number of
problems (such as testing for primality [Rab80]) that we can solve probabilis-
tically but not deterministically, and we would like to be able to reason about
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these protocols in terms of knowledge, too. Probabilistic protocols, however,
typically guarantee that certain conditions hold only with high probability,
and not with certainty. Consequently, while a processor may not know a
given fact is true, it may be quite confident the fact is true. In [FH88], Fagin
and Halpern give a general framework in which it is possible to define an
entire family of definitions of knowledge, called probabilistic knowledge, that
incorporate knowledge and probability. Their idea essentially depends on
being able to assign probability spaces to the various processors to use when
computing their "confidence" that a given fact is true. They do not tell us,
however, which assignment to use.

In Chapter 4, we show how to construct the "best" assignment of prob-
ability spaces, and hence the "best" definition of probabilistic knowledge.
Surprisingly, however, one of our main observations is that there is no single
definition of probabilistic knowledge that is most appropriate in all contexts.
More precisely, we show that the various definitions of probabilistic knowl-
edge can best be understood in terms of betting games and betting against
different adversaries. We show how different adversaries lead to different
definitions of probabilistic knowledge, and given a particular adversary, we
show how to construct the "best" definition of probabilistic knowledge for
this particular adversary (where "best" is made precire in terms of betting
games). In addition, we show how definitions of probabilistic knowledge can
be used to analyze probabilistic protocols: we give a specification of a proba-
bilistic version of coordinated attack in terms of probabilistic knowledge, and
then show how different definitions of probabilistic knowledge (correspond-
ing to increasingly powerful adversaries) result in problem specifications with
increasingly powerful correctness conditions.

Another context in which the standard definition of knowledge does not
seem particularly appropriate is when it is important to recognize the bounds
on processors' computational resources. The standard definition of knowl-
edge essentially says that a processor knows any fact that follows from the
information in its local state, regardless of the complexity of computing that
fact. In the context of cryptography, for example, the assumption that a
polynomial-time processor cannot factor a random integer and heuce can
not know its factorization is often crucial to the security of cryptographic
protocols. In fact, cryptographic protocols are interesting because they typi-
cally combine both the use of probability and the use of complexity-theoretic
assumptions, meaning that a definition of knowledge useful in the context
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of cryptography will have to incorporate both probability and bounds on
processors' computational resources.

Two types of cryptographic protocols that have received an enormous
amount of attention recently are interactive and zero knowledge proof sys-
tems [GMR89. The intuition underlying a zero knowledge proof system
is that a "prover" would like to convince a "verifier" that a certain fact is
true without leaking any "knowledge" of any other fact to the verifier in
the process. Interestingly, while this intuition is closely related to notions of
knowledge, the cryptographic definitions of such proof systems do not make
any explicit reference to knowledge.

In Chapter 5, we explore definitions of knowledge that incorporate both
probability and bounds on processors' computational powers. In particular,
we show how interactive proof systems motivate a new notion of practical
knowledge. We then characterize the definition of an interactive proof system
directly in terms of practical knowledge. Using this definition of knowledge,
we capture the intuition that the verifier learns essentially nothing as a result
of a zero knowledge proof, other than the fact the prover initially sets out to
prove. Finally, using these characterizations, we sketch an example of how to
prove simple properties of such proof systems directly in terms of knowledge.
This work represents a first step toward the ultimate goal of being able to
reason about cryptographic systems directly in terms of knowledge, reason-
ing at a higher semantic level than the operational cryptographic definitions
themselves. In addition, this work sheds some light on issues concerning def-
initions of knowledge (like practical knowledge) that account for processors'
limited computational resources.



Chapter 2

Knowledge and
Common Knowledge

In this work, we will study systems of agents that interact in some way,
typically to solve a problem. While the precise meaning of an agent will
depend on the system under consideration (an agent may be a processor in a
distributed system or a consumer in an economic model), the meaning should
always be clear from context. The purpose of this chapter is to review the
standard definitions of what it means for such an agent to "know" something.

2.1 Systems of Agents

We begin with a formal model of a system of agents. Our model is essentially
that of [HF88], a simplification of [HM84].

Consider a system of n interacting agents Pi, ... ,pn (we will sometimes
denote agents with letters like p and q). Loosely speaking, an interaction of
these agents is uniquely determined by the sequence of global states through
which the system passes in the course of the interaction. Formally, a global
state is an (n + 1)-tuple (se, ,.... , S) of local states, where si is the local
state c.. agent p (also called pi's view) and .9 is the state of the environment.

Much of this chapter's presentation comes from joint work with Yoram Moses [MT86,
MT88], which was in turn patterned after [HM84, DM86]. Although the notion of an
indezical set was first defined in [MT86, MT88], the basic ideas used in the proofs in this
chapter have appeared elsewhere [HM84, HM85].

21
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Intuitively, the state of the environment is intended to capture everything
relevant to the state of the system that cannot be deduced from the agents'
local states. In a message-passing system, for example, the state of the
environment might include a message buffer for each processor in the system,
containing the messages sant to the processor but not yet delivered. A run is
an infinite sequence of global states; numbering the states from 0 to infinity,
we think of the kth global state as the global state at time k. Intuitively, a
run is a complete description of one possible interaction of the system agents.
A system is simply a set of runs, describing the set of all possible interactions
of the system agents (possibly the set of all possible executions of a given
protocol, for example). We denote the global state at time k in run r by r(k),
the local state of p in r(k) by ri(k) (when denoting pi by q, we denote q's
local state by rq(k)), and the state of the environment in r(k) by r (k). We
refer to the ordered pair (r, k) consisting of a run r and a time k as a point.
We say that a point (r, k) is a point of a system 7Z iff r is a run of 7?, and we
frequently abuse notation and write (r, k) E 7Z to denote the fact that (r, k)
is a point of 7. Finally, for notational convenience, we often denote points
with letters like c or d.

We typically assume that all agents in a system are following some sort
of protocol which, roughly speaking, determines an agent's behavior as some
function of its local state. This assumption is particularly important in Chap-
ters 3 and 5. Since the systems considered in these chapters are synchronous,
we now give a general definition of a protocol in a synchronous system which
will be refined later in these chapters.

To motivate the definition of a protocol, consider the following informal
description of computation in a synchronous system of agents following a
protocol P. Computation begins in an initial state at time 0 and proceeds in
a sequence of rounds, with round k lasting from time k through k + 1 (time
k is considered to be part of the preceding round h - 1). Round k consists
of three phases. First, each agent performs some action (such as deciding
on an output value) and sends messages to other agents in the system as
determined by the protocol P and its local state at time k - 1. Next, each
agent receives all messages sent to it during round k by other agents in the
system. Finally, each agent changes its local state as determined by the
protocol P; its local state at time k - 1, and the messages it received during
round k.

Formally, therefore, a protocol is a tuple of local protocols, one for each
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agent. A local protocol for an agent consists of three components: a function
called an action protocol that maps a local state to an action a, where a is
intuitively the action the agent is to perform in the local state; a function
called a message protocol that maps a local state to a list ml,... ,rn of
messages, where mi is intuitively the message to be sent to pj in the local
state; and a function called a state protocol that maps a local state and a list
ml,..., mn, of n messages to another local state, where mi is intuitively the
message just received from pi. A protocol is a deterministic protocol if these
functions are deterministic, and a probabilistic protocol if these functions are
probabilistic. We implicitly associate with a protocol a collection of global
states called initial states.

A run r of a protocol P, sketched informally above, can be captured in
terms of our formal definition of a run as follows. The global state of r
at time 0 is an initial state. The local state of agent pi at time k > 0 is
determined as follows: first, for each agent pj, apply pj's message protocol
to its local state at time k - 1 to determine what message pj sends to pi
during round k, and then apply pi's state protocol to its local state at time
k - 1 and this set of messages to determine pi's local state at time k. It is
technically convenient to assume that the state of the environment at each
time k > 0 encodes the protocol P and the history of the run through time
k, where the history is a list of k + 1 n-tuples giving the local state of each
processor at each time from 0 through k. Given a protocol P and a run r as
defined above, we say that r is a run of P. We note, however, that in later
chapters it will be necessary to elaborate this definition of a run of P. For
example, in Chapter 3 agents will be able to receive messages from sources
outside the system in addition to agents within the system. Furthermore, in
that chapter we will consider unreliable systems in which some messages may
fail to be delivered, meaning that the global state at time k is not necessaily
uniquely determined by the global state at time k - 1 as defined above.

2.2 Definition of Knowledge

Having defined a system of agents, let us fix a given system 1Z for the re-
mainder of this section. We are now in a position to say what it means for
an agent of 7 to know that a given fact is true.

Before we do so, however, we must say what we mean by a fact. Infor-
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maily, a fact is an assertion that is either true or false at a point. Formally,
we identify a fact W with a set of points of 7Z, intuitively the set of points at
which W is true, and we write c p V iffo is true at c.

The basic intuition behind the definition of knowledge [HM84] is that pi's
local state at c captures all the information pi has about the system at c.
If pi has the same local state at two points c and d, then at point c agent
pi cannot distinguish between c and d and must consider both as possible
candidates for the current point. If a fact (p is true at c but false at d, then
p1 cannot be said to know at c that V is true since it is possible, from pi's
point of view, that the current point is actually d where p is false, and not
c. This intuition leads us to say that p1 considers d possible at c if pi has
the same local state at c and d (that is, pi considers (r', k') possible at (r, k)
if ri(k) = r (k')), and that p knows a fact V at c if V is true at all points
pi considers possible at c. In other words, pj knows V if p is guaranteed
to hold, given the information recorded in pi's local state. We denote "pi
considers d possible at c" by c i d, and "pi knows (p at c" by c = Kip. It
follows that

c = Kip iff d 1= o for all d E 7? satisfying c -i d.

Notice that pi's knowledge depends on the system 7?, since 7Z restricts the
set of points pi considers possible. Typically, however, the system will be
clear from context. When the system is not clear from context, we write
7Z, c 1= KiV instead of c [- Kio.

Many times we are interested in the knowledge not just of an individual
agent, but groups of agents. A straightforward generalization of an ivdivid-
ual agent's knowledge is implicit knowledge [HM84] (also called distributed
knowledge). The intuition here is that, just as an individual agent considers
many points possible at c, a group of agents pooling together all the infor-
mation they have about the system may also consider a number of different
points possible; and just as the individual agent knows (p if V holds at all
points it considers possible, the group of agents implicitly knows V if i holds
at all points the group jointly considers possible. Formally, we define the
joint view of a group G of agents at a point (r, k) by

rG(k) 4-Y {(pi, r,(k)) p1 E G}.

Roughly speaking, G's view is simply the joint view of its members. We note
that it is important to take this joint view to be ordered pairs of the form
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(ps, ri(k)) since we have not said an agent's local state contains its identity,
and we want rG(k) = r'(k') to mean every agent in G has the same local
state in r(k) and r'(k'). We say a group G considers a point d possible at
c if every agent in G considers d possible at c; that is, G considers (r', k')
possible at (r, k) if rG(k) = r'G(k). We denote "G considers d possible at
c" by c -G d, and "G implicitly knows V at c" by c [- IG. We define G's
implicit knowledge by

c 1= IGV iff d [- W for all d E 7Z satisfying c -G d.

Intuitively, G implicitly knows W if the joint view of G's members guarantees
that W holds. If pi knows 0 and pi knows 'i D p, for example, then together
they implicitly know V, even if neither of them knows ' individually.

With these definitions we can make formal sense of statement such as "pi
knows W," but we can also make sense of statements such as "pi knows p
knows W" involving multiple levels of knowledge. Continuing in this way, we
reach in the limit the state of common knowledge [HM84]. Roughly speaking,
a fact ' is common knowledge to a group of agents if everyone in the group
knows W, everyone knows everyone knows V, and so on ad infinitum. The
state of common knowledge will be central to our analysis in Chapter 3.
Its central role will result from the close correspondence between common
knowledge among the members of a group of processors in a distributed
system and the simultaneous performance of an action by members of this
group.

The first step in defining common knowledge is to define what it means
for everyone in a group to know a fact. For a fixed group G of agents, the
standard definition [HM84] of everyone in G knows V is given by

E+ -.f A Kip.
piEG

The definition [HM84] of 'p is common knowledge to G, therefore, is given by

CGw e.f E, A EE ... A E, A....

Here we define Ekrp inductively by E°W = ' and E.'p = Eo(E' -v) for
k > 1. in other words,'c 1= CG0 p iff c 1= Ek'p for all k > 1. Thus, roughly
speaking, a fact is common knowledge if everyone knows it, everyone knows
that everyone knows it, and so on ad infinitum.
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In practice, however, the group of interest will not be a fixed set of agents.
For example, in Chapter 3 we will be most interested in facts that are common
knowledge to the group A of nonfaulty processors. The precise meaning of a
nonfaulty processor is not important here, so we do not define A( formally at
this point; simply observe that a processor may be considered faulty at some
points and not at others, and hence that the set of "nonfaulty processors" is
not a constant, fixed set of processors but varies from point to point. This
motivates the definition of common knowledge to a slightly more general
notion of groups of agents. An indezical set S of agents is a function mapping
points to sets of agents (meaning S is a set whose value is indexed by points,
so to speak). That is, S: c i-+ S(c), where S(c) is a set of agents. The notion
of an indexical set is a direct generalization of the notion of a fixed set of
agents. In particular, we can identify a fixed set of agents with a constant
indexical set. The group A of nonfaulty processors, the group P of all
processors, the group of all processors that haven't displayed faulty behavior
by the current time, and many other groups of interest are all indexical
sets of processors. In practice, each of these indexical sets is nonempty. For
example, since it is common in the literature to assume that the upper bound
on the number of faulty processors to be tolerated is strictly less that the
number of processors in the system, the set of nonfaulty processors is always
nonempty. Formally, an indexical set S is nonempty (in a given system 1?)
if S(c) is nonempty for every point c of X?. For technical convenience, we
restrict our attention to nonempty indexical sets.

The first step in defining what it means for a fact V to be common knowl-
edge to agents in an indexical set is to define what it means for everyone in
the indexical set to know p. In extending the standard definition to indexi-
cal sets, a subtle decision must be made. The immediate generalization is to
define

ESWpef A KP.
PiES

This means that c [- E8'p iff c = KjW for every Pi E 8(c). This general-
ization, however, does not capture a subtle aspect of agents' knowledge in
unreliable systems. Consider, for example, a system with some action a in
which it is guaranteed that all nonfaulty processors perform a simultaneously
whenever any nonfaulty processor does so. (Again, the precise definition of
a nonfaulty processor is not important here.) Suppose the nonfaulty proces-
sors perform a at a point c. It seems reasonable to expect that at the point
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c all nonfaulty processors know that all nonfaulty processors are performing
a; in other words, c [- E,¢o where o is the fact "all nonfaulty processors
are performing a." The reasoning is as follows: each nonfaulty processor is
performing a, so each nonfaulty processor knows a is being performed by a
nonfa, "ty processor; and since a is guaranteed to be performed simultane-
ously oy all nonfaulty processors whenever it is performed by any nonfaulty
processor, each nonfaulty processor knows all nonfaulty processors are per-
forming a. This line of reasoning, however, depends on a nonfaulty processor
knowing it is a nonfaulty processor, which need not be the case (and it cer-
tainly won't be the case in Chapter 3). The only thing a nonfaulty processor
really knows at the point c is that if it is nonfaulty, then the action a is being
performed by all nonfaulty processors.

While it is possible for a nonfaulty processor to be a member of the
indexical set AK without knowing it is a member of A, it is not hard to see
that for any fized (or constant) set G, an agent is a member of G iff it knows
it is a. member of G. This follows directly from the definition of knowledge,
since if Pi E G, then pi E G holds at all points (and in particular at all points
pi considers possible), and hence pi knows pi E G. Similarly, given an agent
pi E G, it is not hard to see that pi knows V iff pi knows (pi E G) D w: if
pi knows ', then V, and hence (pi E G) D V, holds at all points pi considers
possible, and therefore pi knows (pi E G) D p. An equivalent definition of
EG', therefore, is

EGSOaef A K,(p E G D p),
piEG

which says that EG'p holds iff each agent in G knows that, if it is a member of
G, then p holds. We choose this form of "everyone knows" as the appropriate
form to generalize to indexical sets. Formally, we define E,'p by

Es 'p AKi(p, E S D ').

piES

We now define Cs'p by

C^ a = EW A E6E8'p A . ..A E ' A.

These definitions of E, and C, directly generalize the standard definitions
from [HM84] and [DM86].
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A useful tool for thinking about EkW and QV'o is the similarity graph
(relative to S). This is an undirected graph whose nodes are the points of
the system, and whose edges are defined as follows: two points c and . tre
connected by an edge iff some agent pi that is a member of both S(c) and
S(d) has the same local state at both c and d (that is, c "i d). For example,
if S is the set A( of nonfaulty processors, two points are connected by an edge
in the similarity graph iff there is a processor that is nonfaulty at both points,
and has the same local state at both points. The property of the similarity
graph making is such a useful tool is that its connected components essential
characterize what facts are common knowledge at any given point. To see
this, we first note that an easy argument by induction on k shows that

Proposition 2.1: c 1= EskW iff d 1= p for all points d of distance at most k
from c in the similarity graph relative to S.

Proof: We proceed by induction on k. The induction hypothesis clearly
holds for the case of k = 0 since E°o = p by definition.

Consider the case of k = 1. (Our previous restriction to nonempty index-
ical sets is crucial here.) Suppose c I- E6'p. If d is of distance at most 1 from
c, then some pi in both S(c) and S(d) has the same local state at both c and
d. Since pi E S(c) and c = Ep, we have c [= K(p E , D (p). Since d -i c,
we have d [- (pi E S) D W; and since Pi E S(d), we have d 1= (p. It follows
that d I-- W for all d of distance at most 1 from c. Suppose, conversely, that
d H Wp for all d of distance at most 1 from c. Suppose pi E S(c), and suppose
pi has the same local state at both c and d. If pj E S(d), then d is of distance
at most 1 from c in the graph, so d H ' and hence d H (pi E S) D W. If
pi S(d), then clearly d 1 (pi E S) D p. Since this statement holds for all
points d .-i c, we have c = Kj(pj E S D V); and since this is true for all
pi E S(c), we have c H EW.

For k > 1, suppose the inductive hypothesis holds for k - 1. Notice that
c H E, iff c H Es(E.1 p). By the induction hypothesis, c H E5 (Es-Vp)
if d = Ek-,' ior all d of distance at most 1 from c, and d H Ek-lfp iif e '

for all e of distance at most k - 1 from d. It follows that c H EskV ifi e W
for all e of distance at most k from c. 0

Finally, since c H C.(p iff c H Es'p for all k _! 1, it follows that

Proposition 2.2: c H Cs'p iff d H 'p for all points d in c's connected com-
ponent in the similarity graph relative to S.
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Two points c and d are said to be similar (relative to S), which we denote
by c s d, if they are in the same connected component of the similarity graph
relative to S. Since the indexical set S is generally clear from context (in
Chapter 3 most often being the set X of nonfaulty processors), we denote
similarity by , without the superscript S. We thus have:

Theorem 2.3: c = C,(o iff d 1= V for all d satisfying c - d.

Our analysis in Chapter 3 will exploit this relationship between common
knowledge and the similarity graph. The similarity graph will provide us
with a useful combinatorial tool with which to study when facts become
common knowledge.

2.3 Logic of Knowledge

We remark at this point that the definitions of knowledge and common knowl-
edge we have given have been purely semantic definitions. We have talked
about agents knowing facts, but we have not said where these facts come
from other than to say that each fact corresponds to a set of points in a sys-
tem. It is often convenient to have a formal, logical language of knowledge
and common knowledge in which we can make statements about an agent's
knowledge. We now show how to define such a language.

Let be some arbitrary set of primitive propositions. Intuitively, these
propositions are statements about points in the system that do not make
explicit mention of an agent'd knowledge, statements such as "the value of
register x is 0" or "processorpi failed in round 3." Let £(1) be the language
obtained by closing P under the standard boolean connectives (conjunction
and negation) and the knowledge operators of the form Ki, IG, E8 , Eh, and
C, (one might also consider adding some of the standard modal operators
from linear-time temporal logic such as 0 and 0). In other words, £(I) is
the smallest language with the property that if o and 1b are contained in
£(f), then so are o A 1b, -o, Kip, etc. Strings in the language £(4) are
called formulas. We use so D lb as a shorthand for -"p V ib, meaning that the
truth of (0 implies the truth of ib.

So far, the formulas in £(I) are just strings in a language with no intrinsic
meaning in themselves. In order to give these formulas meaning in a system
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R, we require a truth assignment r that maps each of the primitive proposi-
tions (p E I to the set of points r('p) of 7? at which wp is true. Given such a
truth assignment, the truth of an arbitrary formula So E £('§) is defined by
induction on the structure of 'p using the definitions given above:

cI='p iff c E 7-('p) whenever S E It
c Ab iff c pandc b
c =-'V iff c (P
c HKf' iff d V for all d .,c
c IG V iff d o for all d -G c
c Esp if" d ( whenever d i c and pi E S(c)'
c E.p if c = Es(E-Iv) whenever k > 1
c H =s' iff cH Ek for all k > 1

We assume that associated with every system 7? is a truth assignment rg
determining for every primitive proposition in 4 the points of 7Z at which
the proposition is true. From this assumption it follows that every formula
in our language corresponds to the set of points of 7? at which the formula
is true. Thus it follows that every formula in our language corresponds to
a fact, a set of points of 7?, as previously defined. For this reason we will
sometimes abuse terminology and use the word "fact" in place of "formula."
We remark that in later chapters we will be adding more knowledge operators
to our language £(f) as we refine our definitions of knowledge.

Finally, a formula 'p is said to be valid in the system R, which we denote
by 7 H V, if V is true at all points of 7 (as determined by the system's
truth assignment r'X). A formula ' is said to be valid, which we denote by
-S, if 'p is valid in the system 7? for all systems 7.

2.4 Properties of Knowledge

The notions of knowledge, implicit knowledge, and common knowledge de-
fined above are closely related to modal logics that have been extensively
studied by philosophers (see [Hin62]). A modal operator M is said to have

lNotice liai tis is equivalen , t o d e- Allps Mi g-, c Ir 10" . .

pi E S(c). The advantage to our definition is we do not have to worry about whether
pi E 8, and hence pi E S D (o, is a formula in our language.
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the properties of the modal system S5 if the following inference rule is satisfied
for every system 1Z

1. if V is valid in the system 1Z then M , is valid in the system R

and the following formulas are valid

2. M oD,

3. (MW A M(o D 0)) D AP,

4. MW D MMp, and

5. -Mo D M-MW.

If we take M to be the knowledge operator Ki, these statements may be
interpreted as follows: the first statement says an agent knows all facts W
that are necessarily true; the second says an agent can know only true facts,
since it says that if an agent knows V then V must be true; the third says
an agent knows all consequences of its knowledge, since if it knows both o
and V D ip, then it also knows 0; the fourth says that an agent knows what
it knows, since if an agent knows 'p, then it knows that it knows so; and the
fifth says that an agent knows what it doesn't know, since if an agent does
not know (p, then it knows it does not know W. It is not hard to show that
the definitions of knowledge, implicit knowledge, and common knowledge as
given above immediately implies the following (cf. [HM85, DM86]):

Proposition 2.4: The operators Ki, IG, and C, have the properties of the
modal system S5.

Proof: We sketch the proof for the knowledge operator Ki, and leave the
remaining operators for the reader.

1. Suppose (p is valid in the system 1?. For any point c of 7Z, since V is
valid in the system it follows that d H sp for all points d "-i c, and
hence that c j= Kjs. Since c J= Kjso for any point c of IZ, Kjso is valid
in the system X?.

Let c be an arbitrary point of an arbitrary system 1.

2. If c J= KjV, then d H p for all d ' i c, and in particular c H V.
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3. If c H Ki p and c [- Ki(V D ik), then d 1= V and d I. D ib for all
d -, c. It follows that d H =b for all d ,- c, and hence that c = Kiik.

4. Suppose c = KW, and suppose d '-i c. Notice that e -,i d implies
e -i c, since e "i d and d "i c imply that pi has the same local state at
all three points. Since c H KiW implies e H W for all e '-i c, it follows
that e H W for all e i. d, and hence that d H Kip. Since this is true
for all d r.'i c, it follows that c H KiKiV

5. Suppose c H -,KiW, and suppose d "i c. Since c H -KKip, we have
e = cp for some e "i c. But, as above, e -"i d and hence d H 'KiP.
Since this is true for all d r i c, it follows that c H K-Kiv. 11

In addition to the properties of 54, common knowledge satisfies two addi-
tional properties that will prove essential to our analysis in Chapter 3. One
of these useful properties is the so-called fized point axiom

Csw =_ Es(V A Cso).

or
-Es(Cs o)

which states that common knowledge is a fixed point of the E, operator.2

It implies that a fact's being common knowledge is in a sense "public:" a
fact can be common knowledge to a group of agents only if all members of
the group know that it is common knowledge. This axiom also implies that
when a fact becomes common knowledge, it becomes common knowledge
to all relevant agents simultaneously. The proof that common knowledge
satisfies this fixed point axiom is instructive:

Proposition 2.5: The fixed point axiom "Co = E(So A C5 ,)" is valid.

Proof: Suppose a H C8H for some arbitrary point c of some arbitrary system
R. This means c H Es+k+o for all k > 0. Since E,+' = Es(E4o), for every
d adjacent to c we have d H EskW for all. k > 0 by Proposition 2.1, and hence

2The two versions of the fixed point axiom turn out to be equivalent. The first version of

the axiom generalizes more easily to variants of common knowledge considered in [HM84].
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for every d adjacent to c we have both d = 'p and d 1 Ccp (remember that
E',p = W by definition). It follows that c E- E8 (p A CA ').

Suppose, conversely, c = Es(W A CWe). By Proposition 2.1, this means
d H W A Co for all points d for distance at most 1 from c, and in particular
that c H 'p A Cs, so c H C,'p as desired. 13

The second useful property of common knowledge is captured by the
following induction rule:

If 'p D E.,p is valid in the system ?Z,
then 'p D C.e is valid in the system 7.

Roughly speaking, the induction rule implies that if a fact is "public" to a
group of processors, in the sense that whenever it holds it is known to all
members of the group, then whenever it holds it is in fact common knowledge.

Proposition 2.6: The induction rule "if ' D Esrp is valid in the system,
then 'p D C,5 p is valid in the system" is sound.

Proof: Suppose 'p D Esp is valid in the system for some arbitrary system
. To prove 'p D CQWo is valid in the system IZ, we assume c H W and

show c H Ccp. It is enough to show c H EkW for all k >_ 0. We proceed
by induction on k. For k = 0, the fact that c H So and that ESo p by
definition imply c H E' p. For k > 0, suppose the inductive hypothesis holds
for k - 1. By the induction hypothesis for k - 1 we have c H Ek-", so
Proposition 2.1 guarantees d H V, for all points d of distance at most k - 1.
Since, however, 'p D Ecp is valid in the system, we have d H EV', and
Proposition 2.1 guarantees e H- p for all e of distance at most 1 from d.
But this means e H W for all e of distance at most k from c, and hence by
Proposition 2.1 that c H EkW as desired. 11

In the remainder of this work, the notions of knowledge, implicit knowl-
edge, and common knowledge together with their properties proven in this
section will be fundamental to our study of problems in distributed comput-
ing.

We end this chapter with a short discussion of the formulas or facts an
agent is said to know. According to our definitions, facts are properties of
points: they are either true or false at any given point. While facts are said
to be true or false of points, many times the truth of a fact is determined
by some simple property of a point. Many times, for example, the truth at
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a point of a fact tp, like "the last coin flipped landed heads" is determined
simply by the point's global state: given two points with the same global
state, the fact is either true at both points or false at both points. Other
times, the truth of a fact Jo2 like "all coins flipped in this run land heads"
is determined simply by the run at the current point: given two points of
the same run, the fact is either true at both points or false at both points,
depending on whether all coins flipped in the run land heads. Notice that it
is possible for a fact like W2 to be true at one point (r, k) and false at another
point (r', k), even though they have the same global state. This is the case,
for example, if all coins flipped in r land heads, all coins flipped in r' through
time k land heads, and all coins flipped in r' after time k land tails.

Given a system 7Z, let us define a property to be a mapping from the
points of 1Z into some range; for example, mapping from a point (r, k) to the
global state r(k) or the run r. Intuitively, such a mapping maps a point to
some property of the point that is of particular interest. Given a system 7.
and a property P, we say a fact o is a fact about P if fixing the value of P
determines the truth of w: given two points with the same value of P, the
fact ,o is either true at both points or false at both points. For example, if
we assume the global state records the sequence of coins flipped so far in a
run (perhaps this sequence is recorded~in the environment), then the fact V,
above is a fact about the global state since the truth of (Pi at two points with
the same global state is the same; and W2 is a fact about the run since the
truth of V2 at two points of the same run is the same.

Finally, recall our comment that the set 4k of primitive propositions in our
language £(4') typically consists of statements about the system that make no
explicit mention of the agents' knowledge. In particular, it is common to take
these propositions to be facts about the global state. In a given system 1?,
we say the language £(f) is state-generatedif each of the propositions V E 4k
is a fact about the global state. This means the primitive propositions o are
simply statements about the global state (which we view as a particularly
simple but fundamental kind of statement), and not, for example, about
future events in the run.



Chapter 3

Programming Simultaneous
Actions Using
Common Knowledge

In this chapter, we show how thinking about distributed computation in
terms of knowledge can aid in the deig and analysis of protocols for a
number of problems appearing in the literature, and in the proof of nontrivial
lower bounds on the complexity of solving these problems in certain failure
models.

3.1 Introduction

The problem of ensuring proper coordination between processors in dis-
tributed systems whose components are unreliable is both important and
difficult. There are generally two aspects to such coordination: the actions
the different processors perform, and the relative timing of these actions.
Both aspects are crucial, for instance, in maintaining consistent views of a
distributed database. In particular, it is often most desirable to perform co-
ordinated actions simultaneously at different sites of a system. It is therefore
of great interest to study the design of protocols involving simultaneous ac-

This chapter is joint work with Yoram Moses. Earlier versions have appeared in Pro-
ceedings of the 27th IEEE Symposium on Foundations of Computer Science [MT86] and
Algorithmica [MT88].
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tions, actions performed simultaneously by all processors whenever they are
performed at all.

In [DM86], Dwork and Moses study the design of protocols for simultane-
'ous Byzantine agreement in the crash failure model, a failure model in which
a processor fails by simply halting, never sending any message in any round
following its halting round. Their analysis focuses on determining necessary
and sufficient conditions for reaching simultaneous Byzantine agreement in
terms of the processors' states of knowledge about the system. As a result of
this analysis, they derive a protocol for simultaneous Byzantine agreement
with the unique property of being optimal in all runs; that is, their protocol
halts as early as any protocol for the problem could, given the pattern of
faulty processor behavior that occurs. In contrast, previous protocols do not
adapt their behavior on the basis of faulty processor behavior, and hence
always perform as poorly as they do in their worst case run. Implicit in the
work of Dwork and Moses is a general method for obtaining optimal protocols
for many problems involving simultaneous actions in the crash failure model.
Their technical analysis, however, makes strong use of particular properties
of the crash failure model, and does not extend to more complicated failure
models.

This chapter presents a novel approach to the design of fault-tolerant
protocols in several variants of the more complex omissions failure model, a
failure model in which processors fail only by intermittently failing to send
some of the messages they are required by their protocol to send, but do
not necessarily halt as in the crash model. We explicitly define a large class
of simultaneous choice problems, a class intended to capture the essence of
simultaneous coordination in synchronous systems. Many well-known prob-
lems, including simultaneous Byzantine agreement [PSL80, Fis83, DM86],
distributed firing squad [BL87, CDDS85, Rab], etc., can be formulated as
simultaneous choice problems. As the result of a delicate knowledge-based
analysis in these failure models, we derive at once protocols that are optimal
in all runs for all simultaneous choice problems: Each protocol is guaranteed
to perform the desired simultaneous actions as soon as any protocol for the
problem could, given the input to the system and the pattern of faulty pro-
cessor behavior. (We will iuse optimal as shorthand for optimal in all runs.)
Thus, we show how a knowledge-based analysis can be used as a general tool
for the design of protocols for an entire class of problems. Our analysis ap-
plies to the crash failure model as well, and formally extends the statements
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of results in [DM86] to the whole class of simultaneous choice problems (al-
though most of the proof techniques we use are quite different from those in
[DM861).

Our approach is based on the close relationship between knowledge, com-
munication, and action in distributed systems: A number of recent works (see
[HM84], [DM86], and [Mos86]) show that simultaneous actions are closely
related to common knowledge. Recall that, informally, a fact is common
knowledge if it is true, everyone knows it, everyone knows that everyone
knows it, and so on ad infinitum. Notice that every processor performing a
simultaneous action knows the action is being performed. In addition, since
such actions are performed simultaneously by all processors, every processor
knows that all processors know the action is being performed. This argument
can be (and will be) formalized and extended to show that when a simulta-
neous action is performed, it is common knowledge that the action is being
performed. Consequently, a necessary condition for performing simultane-
ous actions is attaining common knowledge of particular facts (cf. [HF85]).
Interestingly, our work shows that in a precise sense this is also a sufficient
condition: The problem of performing simultaneous actions reduces to the
problem of attaining common knowledge of particular facts.

In deriving optimal protocols for simultaneous choice problems, we make
explicit and direct use of the relationship between common knowledge and
simultaneous actions. The derivation proceeds in two stages. In the first
stage, we program the optimal protocols in a high-level language where pro-
cessors' actions depend on explicit tests for common knowledge of certain
facts. These high-level protocols are extracted directly from the problem
specifications via a few simple manipulations. The second stage deals with
effectively implementing these tests for common knowledge. We give a direct
implementation of such tests in all variants of the omissions failure model we
consider. As a result, our high-level protocols have effective implementations
in these failure models as low-level, standard protocols that are optimal in
all runs.

Consider, for example, the following version of the distributed firing squad
problem (cf. [BL87, CDDS85, Rab]): An external source may send "start"
signals to some of the processors in the system at unpredictable times, pos-
sibly different times for different processors. It is required that (i) if any
nonfaulty processor receives a "start" signal, then all nonfaulty processors
perform an irreversible "firing" action at some later point (which means each
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nonfaulty processor enters some distinguished "firing" state it never leaves),
(ii) whenever any nonfaulty processor "fires," all nonfaulty processors do so
simultaneously, and (iii) if no processor receives a "start" signal, then no non-
faulty processor "fires." The high-level protocol we derive for this problem
in the omissions model requires all processors to act as follows:

repeat every round
send current local state to every processor

until it is common knowledge that
some processor received a "start" signal;

"lire" and halt.

Since we exhibit an effective implementation of the test for common knowl-
edge embedded in this protocol, this high-level protocol can be transformed
into a standard protocol that is optimal in all runs. No previous protocol
for this problem suggested in the literature is optimal in all runs. Further-
more, in many cases this protocol "fires" much earlier than any other known
protocol for this problem: In some cases, this protocol "fires" as soon as one
round after the first "start" signal is received.

We show that optimal protocols for simultaneous choice problems can al-
ways be implemented in a communication efficient way, in all variants of the
omissions model we consider. However, our direct implementation of tests
for common knowledge is not computationally efficient: It requires proces-
sors to perform exponential-time computations between consecutive rounds
of communication. One of the major technical contributions of this chap-
ter is a method of efficiently implementing tests for common knowledge in
several variants of the omissions failure model. In the standard omissions
model, a failure model in which processors fail only by intermittently failing
to send some of the messages they are required by their protocol to send,
we provide a clean and concise method of efficiently implementing tests for
common knowledge. The analysis underlying this method reveals the basic
combinatorial structure underlying the omissions model, as well as crisply
characterizing the set of facts that can be common knowledge at any point
in the execution of a protocol. In the receiving omissions model, a failure
model in which processors fail only by intermittently failing to receive some
of the messages sent to them rather than failing to send messages, testing
for common knowledge is shown to be trivial. This exposes a significant
difference between two seemingly symmetric failure models.
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We are not able to efficiently implement tests for common knowledge in
the generalized omissions model, in which faulty processors may fail both
to send and to receive messages. In fact, we show that testing for common
knowledge in this model is NP-hard. As a result, using the close relationship
between common knowledge and simultaneous actions, we are able to show
that no optimal protocol for any reasonable simultaneous choice problem can
be computationally efficient unless P=NP. In particular, in this model there
can be no computationally-efficient optimal protocol for the distributed firing
squad problem stated above, for simultaneously performing Byzantine agree-
ment (see [PSL80, DM861), or for most any other simultaneous problem. We
consider another variant of the omissions model, called generalized omissions
with information, in which it is assumed that the intended receiver of an un-
delivered message can test (and therefore knows) whether it or the sender is
at fault. We show that the techniques used in the standard omissions model
extend to this model as well, yielding computationally-efficient optimal pro-
tocols. As a result, we see that optimal protocols for simultaneous choice
problems are computationally intractable in the generalized omissions model
precisely because of the fact that in this model undelivered messages do not
uniquely determine the set of faulty processors.

Thus, we show how to derive efficient optimal protocols in the omissions
model, and we show that optimal protocols are intractable in the generalized
omissions model. Since it is unrealistic to expect conventional processors
(limited to polynomial-time computation) to follow such intractable proto-
cols, it becomes becomes interesting to ask how well resource-bounded pro-
cessors can perform simultaneous actions in the generalized omissions model.
Analyzing this problem requires extending the theory of knowledge given in
Chapter 2 to account for the restricted computational power of such pro-
cessors. Such an extension should give rise to notions of resource-bounded
knowledge and common knowledge that closely correspond to the ability of
resource-bounded processors to perform simultaneous actiois. The need for
a theory of resource-bounded knowledge has already been demonstrated, pri-
marily by cryptographic problems (e.g., [GM84, GMR89]), in which compu-
tational complexity is introduced artificially by restricting the computational
power of the adversary, thus allowing solutions involving encryption. This
work, however, provides a more compelling indication of the need for such a
theory, even for the analysis of simple problems in distributed computation
that do not make such assumptions about the adversary. We note that some
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such notions of knowledge have since been proposed [Mos88, HMT88, FZ88],
and we will return to the need for such notions in Chapter 5 when we study
cryptographic protocols in terms of knowledge.

Since some of the proofs in this chapter are quite technical, their details
can make it difficult to obtain a high-level understanding of this work. We
strongly recommend that the reader skip all proofs on the first reading. The
rest of this chapter is organized as follows: Section 3.2 defines the model of
distributed systems used in the chapter. In Section 3.3 we define the no-
tion of a simultaneous choice problem, a large class of problems involving
coordinated simultaneous actions. Section 3.4 presents a uniform method of
deriving an optimal high-level protocol from the specification of a simultane-
ous choice problem, using explicit tests for common knowledge. Section 3.5
deals with the problem of efficiently implementing tests for common knowl-
edge of facts relevant to simultaneous choice problems in a number of failure
models. This section is the heart of the chapter. The analysis in this section
reveals interesting properties of the different failure models, and exposes fine
distinctions between them. Finally, Section 3.6 contains some concluding
remarks.

3.2 Model of a System

This section introduces a model of the distributed systems with which this
chapter is concerned, an elaboration of the model given in Chapter 2. Our
treatment extends and is closely related to that of [DM86].

We consider synchronous systems of unreliable processors. Such a system
consists of a finite collection P = .p,,... ,pn} of n > 2 processors, each pair
of which is connected by a two-way communication link, and each sharing
a common global clock that starts at time 0 and advances in increments
of one.1 We model such systems by elaborating the model of computation
given in Chapter 2 in the following ways. In addition to receiving mz:sages
from other processors at the end of a round, a processor may also receive
requests for service from clients external to the system (think, for example,
of a distributed airline reservation system). These external requests from the

1We assume the existence of a shared global clock for ease of exposition. The analysis
performed in this chapter applies even if the processors have their own local clocks, possibly
displaying different times, as long as the clocks tick (or advance) at the same rate.
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clients are considered distinct from the internal messages sent by processors
in the system. Actions resulting from the servicing of such requests may
take a variety of forms, including the initiation of various activities within
the system by sending certain messages to other processors in later rounds.
Each message sent by a processor is assumed to include the identities of the
sender and intended receiver of the message, as well as the round in which it
is sent; similarly for each request. At any given time, a processor's message
history is a set containing the messages it has received so far from the other
processors, and a processor's input history is a set containing its initial state
together with the requests it has received so far from the system's external
clients. A processor's local state at any given time consists of its message
history, its input history, the time on the global clock, and the processor's
identity. For technical reasons, it will be convenient to talk about processors'
states at negative times (before time 0). A processor's state at a negative
time is defined to be a distinguished empty state.

We assume processors are following a deterministic protocol as defined in
Chapter 2. Notice, however, that the state protocol component of a proces-
sor's local protocol is no longer of interest since we have already described
how a processor's local state should change from round to round, and we
will ignore it for the remainder of this chapter. Consequently, an equivalent
definition of a protocol is a function from processor's local state to a list of
actions the processor is required to perform, followed by a list of messages
the processor is required to send. While we assume that all processors in the
system faithfully follow their protocols, sending and receiving messages as
required, some messages may be lost due to failures in the system. A run of
a protocol in the absence of any such failure is defined precisely as defined
in Chapter 2. In the presence of failures, however, we must elaborate this
definition: given a run in which failures occur, a processor's message history
at time k no longer records all messages sent to it during round k since some
of these messages may be lost. (Of course, the processor's message history
at time k will record all messages recorded in its message history at time
k - 1.) We attribute lost messages to failures on the part of processors (due
to the failures of their input or output ports, say), and the various failure
models we consider differ only in how we assign these failures to processors.

* the omissions model ([MSF83]), in which a lost message indicates that
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the sender of the message is faulty;

* the receiving omissions model, in which a lost message indicates that
the receiver is faulty;

* the generalized omissions model ([PT86]), in which a lost message in-
dicates that either the sender or receiver is faulty; and

s generalized omissions with information, which differs from the general-
ized omissions model in that the intended receiver of a lost message is
told whether the sender or the receiver is faulty.

When the sender of a lost message is said to be at fault, we say the processor
failed to send the message; and when the receiver of a lost message is said to
be at fault, we say the processor failed to receive the message.

We now define the notion of a failure pattern, a formal description of
faulty processor behavior during a run. The notion of a failure pattern in
each variant of the omissions model is a suitable restriction of the general
definition given here. Remember that a faulty processor may fail to send or
receive certain messages. It is therefore natural to define the faulty behavior
of a processor p to be a pair of functions S and R mapping round numbers to
sets of processors. Intuitively, these are the processors p fails to send messages
to or receive messages from, respectively, during each round. A failure pattern
is a collection of faulty behaviors (Si, Ri), one for each processor pi. The
processor pi is said to be faulty in such a failure pattern if either of the
sets Si(k) or R,(k) is nonempty for some k, in which case pi is said to fail
during round k, and pi is said to be nonfaulty otherwise. If, for example, the
set Si(k) contains the processor pj, we say that pi is faulty since any message
p 's protocol requires that it send to pj will be lost. Notice, however, that
a faulty processor need not actually ezhibit any faulty behavior at all since
the fact that any message from pi to pj during round k is lost will never be
discovered if pi's protocol does not require it to send any message to pj in
round k.

The failure pattern of a run is a failure pattern with the property that
in every round k each processor pi sends no messages to processors in Si(k)
but sends all required messages to processors not in S (k), and receives no
messages from processors in RP(k) but receives all messages sent to it by
processors not in RP(k). Notice, by the way, that a run may be consistent
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with more than one failure pattern if the protocol being followed does not
require processors to send messages to every processor in every round. Given
a run r, if -ti is the complete input history of processor pi in r, then we say
that 7 = (-I,,... , -. ) is the input to r.

A pair (7r,-y), where 7r is a failure pattern and - is an input, is called an
operating environment. Notice that an operating environment is independent
of any particular protocol. An operating environment simply determines for
each processor and for each round what faulty behavior it will exhibit (if
any) during the round and what external requests it will receive during the
round, regardless of the protocol the processor is following. Given an op-
erating environment together with a particular protocol, however, the two
uniquely determine a run of the given protocol (in the given operating envi-
ronment). Two runs of two different protocols are said to be corresponding
runs if they have the same operating environment. The fact that an oper-
ating environment is independent of the protocol will allow us to compare
different protocols according to their behavior in corresponding runs.

In many systems of interest, the environment reacts to the protocol being
followed by the system, meaning that the input the system recc.ived from the
environment can depend on the output to the environment generated by the
system. One can imagine, for example, a bank customer walking up to a
teller to withdraw $100. If the teller's "protocol" causes the teller to hand
the customer 100 one dollar bills, the customer will probably ask for two $50
bills instead. If the teller's "protocol" causes the teller to hand the customer
a single $100 bill, the customer may not ask for two $50 bills. Because the
environment reacts differently to the two teller protocols, making different
requests in the context of the different protocols, it seems difficult to compare
the two protocols in the context of a fixed sequence of requests by the bank
customer. In contrast, however, we are interested in protocols that react to
their environment, andi not the environment's reaction to the protocol. Our
method of comparing protocols does not allow us to study the interaction of
protocols and their environment from both points of view.

In this work, we study the behavior of protocols in the presence of a
bounded number of failures (of a particular type) and a given setting of
possible inputs. It is therefore natural to identify a system with the set of
all possible runs of a given protocol under such circumstances. Formadly, a
system is identified with the set of runs of a protocol 1' with n > 2 proces-
sors of which at most t < n - 2 may be faulty (in the sense of a particular
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failure model M defined above), where the complete input history of each
processor pj is an element of a set ri. We denote this set of runs by the
tuple E = (n, t, , , r,,). Our definition of a system ensures that
the input to the system is orthogonal to, and hence carries no information
about, the failure pattern. In addition, since the set of possible inputs in the
system has the form P1 x ... x P,,, one processor's input contains no infor-
mation about any other processor's input, and hence the only way in which
processors obtain information about other processors' input is via messages
communicated between the processors in the system.

While a protocol may be thought of as a function of processors' states,
protocols for distributed systems (as well as protocols for sequential and
parallel computation) are typically written uniformly in terms of the number
n of processors and the number t of failures tolerated, for values of n and
t of virtually arbitrary size (although requirements such as ,n > 2t must
sometimes be satisfied in order for the protocol to behave correctly). In
this sense, the protocol is parameterized by n and t, and the actions and
messages required of a processor by a protocol may be viewed as depending
on n and t as well as the processor's state. Therefore, for the purposes
of this chapter, we assume that a protocol is a function from n, t, and a
processor's local state to a list of actions the processor is required to perform,
followed by a list of messages the processor is required to send.2 Since each
protocol is defined for systems of arbitrary size, it is natural to define a
class of systems to be a collection of systems {E(n, t) : n > t + 2 > 0}, where
E(n, t) = (n, t, 1', M, ri;,... r, n) for some fixed protocol 1', failure model M,
and input sets Fr.

2 Notice that processors must compute this function by following some algorithm. T'hus,
while we formally define a protocol in terms of functions, it is convenient to maintain both
views of a protocol as a function and an algorithm.
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3.3 Simultaneous Choice Problems

In this section we define the class of simultaneous choice problems for which
we construct optimal protocols, a large class of problems that capture the
essence of coordinated simultaneous action in a distributed environment.
Roughly speaking, these problems require that one of a number of alter-
native actions be performed (or "chosen") simultaneously by the nonfaulty
processors, where for each action we are given conditions under which the
action must be performed and conditions under which its performance is for-
bidden. In addition to these conditions, the specification of such a problem
must also determine the possible operating environments in which such a
choice is to be made, by specifying what inputs each processor may possibly
receive and what types of processor failures are possible.

We think of an action as something special that can be done by a proces-
sor. An action might be writing the value 1 to an output register, or entering
some distinguished state such as the "firing" state in the distributed firing
squad problem. Formally, an action can be modeled as a message a processor
can send to the environment. There is nothing about the action itself that
restricts its performance, say, to time k but not to time k+ 1. A simultaneous
action a is an action with two associated conditions pro(a) and con(a) stat-
ing when the action a should or should not be performed. Recall that a run
is determined by a protocol and an operating environment; it follows that
the operating environment is the most general protocol-independent aspect
of a run a problem specification can refer to when stating when an action
should or should not be performed. Consequently, we assume both pro(a)
and con(a) are facts about the operating environment.

A simultaneous choice problem (or simply a simultaneous choice) C is de-
termined by a set {a:,... , am} of simultaneous actions and their associated
conditions, together with a failure model M, and a set rj of complete in-
put histories for each processor pj. Intuitively, we want all of the nonfaulty
processors to choose one of the actions a, that they can perform without
violating the pro(aj) and con(aj) conditions, and to perform a, simultane-
ously. Since the pro(aj) and co(aj) conditions are facts about the operating
environment, which means they depend on the input and failure patterns,
we include in the problem specification the sets rj determining the possi-
ble input patterns and the failure model M determining the possible failure
patterns. (M will always be one of the failure models defined in Section 3.2.)
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Loosely speaking, we want every run r of a protocol implementing C
satisfy the following conditions:

(i) each nonfaulty processor performs at most one of the ai's,

(ii) any ai performed by some nonfaulty3 processor is performed simulta-
neously by all of them,

(iii) ai is performed by all nonfaulty processors if r satisfies pro(a), and

(iv) ai is not performed by any nonfaulty processor if r satisfies con(a).

More formally, a protocol P and the simultaneous choice C determine a class
of systems {E(n,t) : n > t + 2}, where ,(n, t) = (n,t,P, M,l, . . . ,rr). We
say that P implements C if every run of every system in the class determined
by P and C satisfies the conditions (i)-(iv) above. A simultaneous choice is
said to be implementable (or satisfiable) if there is a protocol that implements
it. We note that both P and C are required to completely determine a system
(a set of runs): because a run is determined by a protocol and an operating
environment, the protocol P is clearly required, and the failure model M and
input sets ri contributed by C. are required to determine the set of possible
operating environments.

This definition of a simultaneous choice is fairly abstract. However, many
familiar problems requiring simultaneous action by a group of processors are
instances of a simultaneous choice. In all known cases, the conditions pro(ai )
and con(ai) are facts about the input and the existence of failures, and hence
are facts about the operating environment. (By the existence of failures we
mean whether any failure whatsoever occurs during the run. Some problems
allow the nonfaulty processors to display default behavior in the presence of
failures; see [LF82].) For example, the distributed firing squad problem is a
simultaneous choice consisting of a single "firing" action a, with the condition
pro(a) being the receipt of a "start" signal by a nonfaulty processor, and the
condition con(a) being that no processor receives a "start" signal. Each set I'j

3 We have chosen the set At" of nonfaulty processors as the set of processors required to
perform actions simultaneously, but the notion of a simultaneous choice problem may be
stated in terms of many other similar (indexical) sets of processors, including the set P of
all processors, with the analysis in this section and the next one carrying through without
change.
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of possible inputs simply allows for a "start" message to be delivered to any
processor at any time.

In addition to simultaneous choice problems, we also consider the closely
related class of strict simultaneous choice problems. Both classes are specified
in essentially the same way, except that runs of a protocol implementing a
strict simultaneous choice are required to satisfy the modified condition

(i') each nonfaulty processor performs ezactly one of the ai's,

together with conditions (ii)-(iv) above. All of the results in this chapter
hold for a strict simultaneous choice as well as a simultaneous choice, and
henceforth we will mention explicitly only to a simultaneous choice.

The simultaneous Byzantine agreement problem (see [DM86, PSL80]) is
an example of a strict simultaneous choice. This problem consists of an
action a0 of "deciding 0" and an action a, of "deciding .' Each set I'j
of possible inputs consists of two possible inputs: one starting with initial
value 0 and receiving no further external input during the run, and the other
starting with initial value 1. The condition pro(ao) is that all initial values
are 0, and the condition pro(a1 ) is that all initial values are 1. The conditions
con(ao) and con(ai) are both taken to be false. Simultaneous Byzantine
agreement is a strict simultaneous choice, since the processors are required
to decide either 0 or 1 in every run. Other related problems that may also be
formulated as (strict) simultaneous choice problems include weak Byzantine
agreement and the Byzantine Generals problem (see [Fis83]).

Having formally defined a simultaneous choice (and a strict simultaneous
choice), let us consider when the specification of such a problem disallows
performing a simultaneous action ai. Clearly, if con(ai) holds then perform-
ing a, is disallowed. In addition, since by condition (i) no more than one
action may be performed by the nonfaulty processors in any given run, the
condition pro(aj), for some j 5 i, requires a3 to be performed, and hence
also disallows aj. It is easy to see that these are the only conditions under
which performing ai is disallowed. This motivates the following definition:

enabled(a,) ^ -con(a,) AA-pro(al).
joi

Our discussion above implies that the performance of an action ai is allowed
by the problem specification iff the condition enabledaj) is satisfied. No-
tice that it is possible for several of the conditions enabled(ai) to hold at
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once, in which case performance of any of the enabled actions is allowed by
the problem specification. In addition, it is easy to see that the formulas
con(a1) D -enabled(a) and pro(a) D -,enabled(ai) (j # i) are valid in any
system in which processors follow a protocol implementing a simultaneous
choice. Finally, notice that because the conditions pro(al) and con(ai) are
facts about the operating environment, so is each condition enabled(a).

As an example, notice that the condition enabled(a) for the distributed fir-
ing squad problem is simply that some processor receives a "start" signal. For
the simultaneous Byzantine agreement problem, the condition enabled(ao) is
that some initial value is 0, and the condition enabled(a1) is that some initial
value is 1. Since for most assignments of initial values both enabled(ao) and
enabled(a1) hold, it is typically the case that deciding either 0 or 1 is accept-
able. It need not be the case (and, in fact, usually will not be the case) that
the conditions enabled(as) for a typical simultaneous choice will be mutually
exclusive.

Having formally defined the notion of a simultaneous action, we are now
in a position to carefully state the relationship between simultaneous actions
and common knowledge mentioned in the introduction: When a simultane-
ous action is performed, it is common knowledge that the action is being
performed. The statement we actually prove is that when such an action is
performed, it is common knowledge that the action is enabled. This is the
first (and the key) relationship we establish between common knowledge and
the performance of simultaneous actions.

Lemma 3.1: Let r be a run of a protocol implementing a simultaneous
choice C. If the action ai of C is performed by a nonfaulty processor at time I
in r, then (r,I) 1 Cy enabled(ai).

Proof: Let cp be the fact "ai is being performed by a nonfaulty processor."
A processor pi performing the action ai clearly knows that it is perform-
ing ai. This processor therefore also knows that if it is nonfaulty, then a
is being performed by a nonfaulty processor. Since r is a run of a protocol
implementing C, the action ai is performed simultaneously by all nonfaulty
processors whenever it is performed by a single nonfaulty processor. It fol-
lows that whenever 'p holds, so does Egr p, and hence w D Eg'p is valid
in the system. The induction rule implies that 'p D CAW is valid in the
system as well. Notice that 'p D enabled(ai) is valid in the system. It
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follows that Cjvo D C.genabled(ai) is valid in the system, and hence so is
o D Cy enabled(a,). Thus, (r,I) = Wp implies (r,t) [- Cgenabled(a,), and we

are done. 01
In the above proof, the essential fact that o D E p is valid in the system

depends crucially on our definition of EVp. As discussed in Chapter 2, a
processor p performing a, knows that ai is being performed, but since a
nonfaulty processor might not know that it is nonfaulty, p might not know
that ai is being performed by a nonfaulty processor. The processor p does
know, however, that if it (p itself) is nonfaulty, then a nonfaulty processor
is performing aj. It is for this reason that we have been led to choose our
definition of EV as we have, as discussed in Chapter 2.

3.4 Optimal Protocols

In this section, we show how to extract a high-level optimal protocol for a
simultaneous choice problem directly from its specification. (As mentioned
in the introduction, we use the word optimal as shorthand for optimal in all
runs; recall that this optimality is in terms of the number of rounds required
to perform a simultaneous choice.) We begin by considering a simple class
of protocols that will serve as a building block in the design of such optimal
protocols. Recall that we think of a protocol as having two components,
an action protocol and a message protocol. A protocol is said to be a full-
information protocol (cf. [Had83, FL82, PSL80]) if its message protocol is:

repeat every round
send current local state to all processors

forever.

Intuitively, since such a protocol requires that all processors send all of the
information available to them in every round, one would expect this protocol
to give each processor as much information about the operating environ-
ment as any protocol could. In particular, the following result shows that
if a processor cannot distinguish two operating environments during runs
of a ful-informatsn protocol, thnof t pro tol.
operating environments during runs of any other protocol.
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Lemma 3.2: Let r and r' be runs of a full-information protocol F, and
let a and s' be runs of an arbitrary protocol 'P corresponding to r and r',
respectively. For all processors q and times 1, if rq(t) = r' (I) then aq(i) -

Proof: We proceed by induction on the time I. The case of I = 0 is
immediate since q must have the same initial state in both r and r', and
hence also in a and s'. Suppose I > 0 and the inductive hypothesis holds for
all processors p at time I - 1. The local state of q at time I is determined by
its local state at time I - 1, the (external) input it receives during round 1,
and the messages it receives during round 1. Since q has the same local state
at time I - 1 in r and r', by the inductive hypothesis, the same is true in a
and s'. Since q receives the same input during round I in r and r', the same
is true in s and s'. If q does not receive a message from p during round I
in r and r', then both operating environments determine that no message
from p to q during round I is delivered. Thus, q does not receive a message
from p during round I in either a or a'. If q does receive a message from p
during round I in r and r', then both operating environments determine that
any message from p to q during round I is delivered. If q receives a message
from p during round I of r and r", then since q must receive the same message
from p in both r and r', the local state of p must be the same at time 1- 1 in r
and r'. By the inductive hypothesis, p's local state at time I - 1 must also be
the same in a and a'. Since 'P is a deterministic function of processor states,
q receives the same messages from p during round I in a and a'. Thus, q has
the same local state at time I in s and a'.  El

Thus, roughly speaking, processors learn the most about the operating
environment during runs of full-information protocols. The following corol-
lary of Lemma 3.2 shows that facts about the operating environment become
common knowledge during runs of such protocols at least as soon as they do
during runs of any other protocol. This result captures in a precise sense a
property of full-information protocols that is essential to our analysis.

Corollary 3.3: Let p be a fact about the operating environment. Let r
and a be corresponding runs of a full-information protocol Y and an arbitrary
protocol P, respectively. If (a, 1) [- Cv p then (r, t) H Qi.
Proof: Suppose that (s ,) 1= Cg o. We will prove that (r,I) 1= CA by
showing that (W, ) for all runs r' of F such that (r, ) r (',1); that is,
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that (r, 1) and (r', 1) are in the same connected component of the similarity
graph. Fix r', and let s' be the run of P corresponding to r'. Lemma 3.2
and a simple inductive argument on the distance between (r, 1) and (r', 1) in
the similarity graph show that (r, 1) - (r', t) implies (s, 1) , (a',1). Since
(8, 1) [ CvW, we have (a', 1) H (p. Since corresponding runs satisfy the same
facts about the operating environment, (', ) H (p implies (r', 1) H So. It
follows that (r, 1) H CS0. 0

We are now in a position to describe how to construct optimal proto-
cols for simultane -us choice problems. Recall that when a simultaneous
action ai is performed, Lemma 3.1 implies that enabled(ai) must be com-
mon knowledge. Since enabled(at) is a fact about the operating environment,
Corollary 3.3 implies that enabled(as) becomes common knowledge in runs
of a full-information protocol as soon at it does in corresponding runs of
any other protocol. Thus, given an effective test that the nonfaulty proces-
sors can use to determine whether enabled(a,) is common knowledge, a test
we denote by test-for-Cvenabkd(ai), the following protocol .Fc is an optimal
protocol for C:

no-actionperformed +-- true;
repeat every round

if no.action.performed and
test-for-Cgenabled(ai) returns true for some ai

then
j +-- min {i : test-for.Cfenabled(ai) returns true},
perform ai,
no.action.performed -- false;

send current local state to every processor;
forever.

Before formally proving that X, is an optimal protocol, we must define more
formally the tests for common knowledge that appear in 'c. Recall that the
fixpoint axiom implies that Cv'p D EIC('p is valid. This guarantees that
C,', follows from the local state of each nonfaulty processor whenever Cq'p
holds. In cther words, since CGW implies EmC#'p which, for every nonfaulty
processor pi, implies KiCvW, each nonfaulty processor can determined from
its local state that Cg'p holds. This is not true for faulty processors.

It is therefore natural to define a test for common knowledge of(P, denoted
as above by test-for-Cv'p, to be a test that, given the local state of a nonfaulty
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processor at (r,l) (together with n and t), returns true iff Cr7 p holds at
(r,l). Such a test may return either true or false when given the local
state of a faulty processor. Let us denote by Al(r,l) the set of actions a,
such that test-for-Cerenabled(ai) returns true when given the local state of pi
at (r, 1). Notice that if pj is nonfaulty, then Ai(r, i) is precisely the set of
actions ai such that Cgenabled(ai) holds at (r, 1). It follows that for all
nonfaulty processors pi the sets Aj are equal at all times. In particular, all
become nonempty at the same time (as soon as enabled(ai) becomes common
knowledge for some al). Thus, if all processors pi choose the action of least
index from Aj as soon as this set becomes nonempty, as required by Fc,
then all nonfaulty processors choose the same action simultaneously. We can
now prove that .Fc is an optimal protocol for C. (Recall that a simultaneous
choice problem is implementable iff there exists a protocol that implements
it.)

Theorem 3.4: If C is an implementable simultaneous choice problem, then
' is an optimal protocol for C.

Proof: We first prove that nonfaulty processors perform actions in runs
of F,, as soon as they do in corresponding runs of any protocol implement-
ing C. Let r be a run of F',, and let s be the corresponding run of a
protocol implementing C. Lemma 3.1 implies that if ai is performed by
a nonfaulty processor at time I in s, then (s,l) H Cgenabled(ai). Since
enabled(ai) is a fact about the operating environment, Corollary 3.3 implies
that (r,I) H Cgrenabled(aj). As a result, Aj(r,I) must be nonempty for all
nonfaulty processors p1, and hence each must perform an action in r no later
that time 1. It follows that nonfaulty processors perform actions in runs of Fc
as soon as they do in corresponding runs of any protocol implementing C.

We now show that F' actually implements C. Let r be a run of X'. First,
it is obvious from the definition of .'c that each nonfaulty processor performs
at most one action in r. (If C is an implementable strict simultaneous choice,
then the preceding discussion shows that the nonfaulty processors perform
ezactly one action in r.) Second, if a ncnfaulty processor pj performs an
action ai at time I during r, then time I is the first time at which Ai(r,k)
is nonempty, and ai is the action o "easi index in this be. i ,A , %_-

A ,. (r, k) for all nonfaulty processors p,m, the same is true for all nonfaulty
processors. As a result, all nonfaulty processors must choose to perform a,
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simultaneously at time 1. Third, if r satisfies pro(a,), then the run s of
any protocol implementing C corresponding tc r must satisfy pr.a,), and
hence ai must be performed in s. As we have already seen, an action must
also be performed in r. Since pro(a,) D -,enabled(ai) for all j 0 i, the set
Aj(r, k) of a nonfaulty processor pj must contain no action other than a, (if
it contains any action at all). Thus, a, must be the action performed in r.
Finally, if r satisfies con(ai), then r does not satisfy enabled(ai), and no set
.,j(r, 1) for any nonfaulty processor pi contains ai. Thus, ai is not performed
in r. It follows that Fc implements C. 13

As a result of Theorem 3.4, we see that full-information protocols can
be used as the basis of optimal protocols for simultaneous choice problems.
Thus, we will restrict our attention to full-information protocols in the re-
mainder of this chapter: Unless otherwise specified, all protocols mentioned
will be full-information protocols, and all runs will be runs of such protocols.
More important, however, a consequence of Theorem 3.4 is that designing
an optimal protocol for a simultaneous choice problem C essentially reduces
to testing for common knowledge of certain facts: In order to design an
optimal protocol for C, it is enough to construct the tests for common knowl-
edge of the facts enabled(a,). We note that the fundamental property of
common knowledge underlying the existence of such tests is the fact that
Cvo D EyC p is valid; that is, when o becomes common knowledge, the
fact that o is common knowledge will follow from the local state of every
nonfaulty processor. The problem of implementing such tests is the subject
of the following section.

Before ending this section, however, we consider the size of messages re-
quired by a full-information protocol Jr. Such a protocol requires processors
to send their entire local state during every round. Since, strictly speaking,
the size of a processor's state may be exponential in the number of rounds
elapsed, this protocol seems to require processors to send messages of expo-
nential length. We now show, however, that in the variants of the omissions
model we consider in this work there is a simple, compact representation of
a processor's state that may be sent instead. Consequently, it will be possi-
ble to implement all full-information protocols (and in particular the optimal
protocol Fc) in a communication-efficient way in all variants of the omissions
model. We note that this representation depends heavily on the fact that
the only faulty behavior a faulty processor may exhibit involves the loss of
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P3 * 0

P2 P2

0 1 2 3 0 1 2 3

a. 9(r, 3) b. 91(r, 3)

Figure 3.1: Communication graphs.

messages. The technique does not work in the Byzantine models where pro-
cessors may send incorrect messages in addition to losing messages. Results
of [Coa86, Mic88, Mic89] show how the size of messages in such models may
be reduced.

Given a run r of F, the communication graph of r (see Figure 3.1) repre-
sents the messages delivered in r. It is a layered graph (with one layer corre-
sponding to every natural number, representing time on the global clock) in
which each processor is represented by one node in every layer. We denote
the node representing processor p at time t by (p,l). Edges connect nodes
in adjacent layers, with an edge between (p, k - 1) and (q, k) iff a message
from p is delivered to q during round k. The labeled communication graph
is obtained by labeling the layer 0 nodes of the communication graph with
processors' names and initial states, and by labeling the layer k nodes (for
k > 0) with the requests the processors receive from external clients during
round k. We note in passing that, since r is a run of the full-information pro-
tocol F, its labeled communication graph uniquely determines its operating
environment. For every point (r, t), we denote by Q(r, 1) the first I + 1 lay-
ers of the labeled communication graph of r, representing the first L rounds
of r. For example, illustrated in Figure 3.1(a) is a graph Q(r, 3) depicting
the first 3 rounds of a run r. We say that 9(r, 1) has length 1.
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Informally, at every point (r, 1) of a run of .F, a processor pi's local state
corresponds to a certain subgraph gi(r, 1) of !(r, 1). For example, the sub-
graph !1 (r, 3) of g(r, 3) is illustrated in Figure 3.1(b). We define the subgraph
gi(r, ) of 9(r, 1) inductively as follows. For I = 0 the subgraph Qi(r, 0) con-
sists of the labeled node (pi, 0). For I > 0 the subgraph GQ(r, 1) consists of
the labeled node (p, 1),the subgraph Qi(r, I - 1), the edges from layer I - 1
nodes to (pi,I), and the subgraphs 9j(r,I - 1) for every layer I - 1 node
(pj, I - 1) adjacent to (pi, 1). Given a set S of processors, it is convenient
to denote by gs(r, t) the union of the graphs Gi(r, 1) for every Pi E S. We
remark that gs(r, 1) uniquely determines gi(r, 1) for every Pi E S. The next
lemma states that a processor's state of the labeled communication graph
uniquely determines its view of the run.

Lemma 3.5: Let r and r' be runs of a full-information protocol F. For
every processor pi and time 1, ri(l) = r (t) if Gi(r, 1) = g,(r', 1).

Proof: We proceed by induction on 1. The case of I = 0 is immediate.
Suppose I > 0 and the inductive hypothesis holds for t - 1.

Suppose pi has the same local state at time I in both r and r'. This
implies, in particular, that pi has the same local state at time l- 1 in r and r',
and from the inductive hypothesis it follows that gi(r, I - 1) = gQ(r', I - 1).
In addition, this implies that pi must receive the same input during round t
in r and r', and hence (p,I) is labeled with the same input in Q(r,I) and
Oi(r', 1). If pi does not receive a message from a processor pj during round I
in r and r', then there is no edge from (pj,I - 1) to (pi,I) in either gi(r, )
or gi(r', 1). If pi does receive a message from a processor pi during round I
in r and r', then it receives the same message in both runs, and pj must
have the same local state at time I - 1 in both runs. Hence, there is an edge
from (pj, I - 1) to (pi, 1) in both Gi(r, 1) and Gi(r', 1), and by the inductive
hypothesis we have that Qj(r,I- 1) = Gl(r',I- 1). Thus, Gi(r,1) = Gi(r',t).

Conversely, suppose Gi(r, I) = Gi(r',t). It follows that Q(r, I - 1) =
Q(r, t - 1), and by the inductive hypothesis pi has the same local state at
time I- 1 in r and r'. The node (pi, 1) must be labeled with the same input in
Gi(r,t) and Qi(r', t), so pi receives the same input during round I in r and r.
The edges from layer i- 1 nodes to (pi, ) are the same in Y;(rL) and Yi(r', 1),
so pi receives messages from the same processors during round I in r and r.
Again, G(r,I- 1) = G(r',I- 1) for every node (p,I- 1) adjacent to (pi,I),
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and by the inductive hypothesis pi has the same local state at time t - 1
in r and r'. Since Y requires that every processor send its entire local state
in every round, pi receives the same messages during round I in r and r'. It
follows that pi has the same local state at time I in both r and r'. 11

Lemma 3.5 implies that a processor's local state and its view of the
corresponding labeled communication graph convey the same information:
Given either the graph gi(r, 1) or the local state r(t), reconstructing the
other is straightforward. Therefore, an equivalent implementation of a full-
information protocol is one in which the processors send the labeled commu-
nication graphs corresponding to their local states instead of sending their
entire local states. From now on, we will use the term full-information proto-
col to refer to this equivalent form. It is easy to see that the size of gi(r, 1) is
polynomial in the number of processors n, the global time 1, and the size of
the requests received from external clients. It follows that messages required
by a full-information protocol are of polynomial size.4 Furthermore, given the
labeled communication graphs corresponding to the local states at time I- 1
of the processors that send messages to a given processor p1 during round 1,
it is easy to construct the labeled communication graph corresponding to pi's
local state at time 1. Thus, the use of such compact representations of a pro-
cessor's state is computationally efficient as well as communication efficient.
Finally, recall that we have formally defined a test for common knowledge to
be a function of processor states (as well as n and t). In light of the preced-
ing discussion, there is no loss of generality in assuming that such a test is
a function of communication graphs corresponding to processor states. We
now turn to the problem of implementing such tests.

3.5 Testing for Common Knowledge

The previous section established the claim that tests for common knowledge
provide a very powerful programming technique: The design of optimal pro-
tocols for simultaneous choice problems reduces to implementing tests for
common knowledge of certain facts. In this section we investigate the prob-
lem of implementing tests for common knowledge in the different variants of

4In the Byzantine failure models, however, in which processors are allowed to lie (or
maliciously deviate from the protocol), we know of no such compact representations. See
[Coa86] for a trade-off between message size and running time possible in such models.
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the omissions model. With such tests, we will be able to construct optimal
protocols for simultaneous choice problems in these models. As we will see,
properties of the different variants of the omissions model cause dramatic dif-
ferences in the complexity of testing for common knowledge. In addition, the
optimal protocols we construct will have interesting properties that vary ac-
cording to the failure model. We will discuss these properties as we consider
each variant later in this section.

Recall that a protocol is a function that, given the number of processors n,
the bound t on the number of faulty processors, and a processor's state, yields
a list of the actions the processor should perform, as well as the messages
it should send in the next round. (Thus, the protocols we are interested in
are uniform in n and ) Since the protocols we will be concerned with are
full-information protocols, processors' states will be efficiently representable
by labeled communication graphs. We will soon restrict our attention to
simultaneous choice problems in which the external requests are of constant
size (or, equivalently, to problems involving only a constant number of possi-
ble requests from external clients). This restriction implies that processors'
states at time I will be of size polynomial in n and 1. A protocol wil there-
fore determine the messages and actions required at time I based on input
of size polynomial in n and 1. Consequently, we will measure the complexity
of computations performed by protocols at time I in systems of n processors
as a function of n and 1: By polynomial time, polynomial space, etc., we will
mean polynomial in n and 1.

The definition of simultaneous choice problems presented in Section 3.3
is very general, so general, in fact, that it is possible to define simultane.
ous choice problems with a variety of anomalous properties. For example,
it is possible to define a simultaneous choice problem in which pro(a) is the
fact (P = "the first round in which p receives an external request is a round
whose number is the index of a halting Turing machine" (in some a priori
well-defined enumeration of Turing machines), and co,(a) ic -'. Clearly,
since it is undecidable whether p holds even given the local state of p af-
ter it receives its first request, it will also be undecidable which of ChVp or
Cg-V holds when processor p's local state becomes common knowledge. It
follows that this simultaneous choice problem cannot be effectively imple-
mented by a computable protocol. Similarly, one can construct simultaneous
choice problems in which evaluation of the conditions is intractable, rather
than undecidable as in the above example. It is also possible to introduce
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anomalies by defining the sets I'i of external inputs in strange ways. Since
we are not interested in problems involving such inherent anomalies, we will
avoid them by making restrictions on the relevant facts and the inputs arising
in the simultaneous choice problems we will consider in the sequel.

We first define the class of practical facts, which will be used to restrict
the conditions that specify a simultaneous choice problem. Roughly speak-
ing, one essential property of a practical fact (p is that it is easy to determine
from a processor's state whether a run satisfies W. More formally, we denote
by "Ugs(r, l)" the property of being a run r' such that gs(r,l) = Gs(r', I).
Consequently, if gs(r, 1) D (p is valid in a system, then every run r' of the
system satisfying gs(r, 1) = gs(r', 1) must also satisfy w. In this case, we
say that gs(r,l) determines V. Notice, for example, that no finite labeled
communication graph gs(r, 1) can determine that a run is failure-free (since
the run is infinite, and a failure can always happen outside the finite scope
depicted by the graph). With this notion in mind, a fact go is said to be
practical within a class of systems {E(n, t) : n> t + 21 if the following con-
ditions hold: (i) So is a fact about the input and the existence of failures,
and (ii) there is a polynomial-time algorithm to determine, given n, t, and a
graph gs(r,t) of a point of 1(n,t), whether gs(r,t) D p is valid in E(n,t).
The first condition is justified by the fact that we will be testing for common
knowledge of the conditions enabled(ai) arising from natural simultaneous
choice problems, and such conditions are typically conditions on the input
and existence of failures. The second condition ensures that it is easy to test
whether a labeled communication graph determines that the fact holds. (We
make this restriction since it would clearly be unreasonable to expect the
processors to be able to efficiently identify and act based on facts that are
intractable to compute from the labeled communication graph.)

We now consider a natural restriction on the sets ri of possible inputs.
A class of systems is said to be practical if there are two fixed finite sets S
and M of initial states and external requests, respectively, such that each ri
in all systems of the class is the set of complete input histories whose initial
state is in S, and in which the input received in every round is a subset
of M. This condition ensures that the input sets are of a simple form. In
particular, it implies that all ri's are identical, and that the input received
by a processor during any given round is of constani size.

Having defined the notions of practical facts and practical classes of sys-
tems, we say that a simultaneous choice C is practicalif (i) the class of systems
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determined by a full-information protocol and C is practical, and (ii) each
condition enabled(ai) is practical within this class of systems. Essentially
all natural simultaneous choice problems are practical. In particular, all si-
multaneous choice problems appearing in the literature are prr.ctical. Our
analysis will hence be restricted to testing for common knowledge of practi-
cal facts and to designing and implementing optimal protocols for practical
simultaneous choice problems. We remark, however, that our analysis will
apply to a more general class of simultaneous choice problems, whose precise
characterization is somewhat complicated.

In Section 3.4 we programmed protocols for simultaneous choice problems
in a high-level language in which processors' actions depend on explicit tests
for common knowledge. Recall that test-for-Cyenabled(ai) is a test nonfaulty
processors can use to determine whether enabled(as) is common knowledge:
Given the graph corresponding to the local state of a nonfaulty processor at
(r,t) as input, test-for-Cgenabled(a) returns true iff (r,I) [- C./enabled(a).
Theorem 3.4 implies that given such a test for each condition enabled(ai),
the protocol F, is an optimal protocol for C. Until this point, however, we
have sidestepped the issue of whether such tests actually exist. With the
next lemma we see that, for practical simultaneous choice problems, such
tests can be implemented in polynomial space.

Lemma 3.6: If C is a practical simultaneous choice problem, then for each
action ai the test test-for-Cgenabled(a,) can be implemented in polynomial
space.

Proof: We must prove the existence of an algorithm test-for-Cgenabled(a)
determining in polynomial space whether enabled(as) is common knowledge
at (r, 1), given as input n, t, and the graph gi(r, 1) corresponding to the local
state of a nonfaulty processor pj at (r, 1). We will actually exhibit a nondeter-
ministic, polynomial-space algorithm A, determining whether enabled(as) is
not common knowledge at (r,'I). Since NPSPACE=PSPACE and PSPACE is
closed under complementation (see [HU85]), the existence of the algorithm Ai
implies the existence of an algorithm test-for-Cgj enabled(a).

Let {E(n, t) : n > t + 2} be a class of systems determined by a full-
information protocol and the problem C. We claim that such an algorithm Ai
need only guess a point (s, t) with the property that G(s, ) D enabled(a,)
is not valid in E(n, t), guess the path from (r, 1) to (s, 1) in the similarity
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graph proving that (r, 1) - (a, 1), and then verify that these two conditions
hold. To see this, notice that since 9(s, t) D enabled(a,) is not valid in
the system, there must be a point (a',t) such that 9(8 ,t) = 9(8',e) and
(a', 1) L enabled(a,). Construct the run with the input of a' in which pro-
cessors fail precisely as they do in a for the first t rounds, and in which no
processor fails after time 1. Let u be a run obtained by adding to this run a
single failure after time i iff there is a failure in a'. Since u and a' must satisfy
the same facts about the input and existence of failures, (a', 1) V- enabled(a,)
implies (u, 1) V- enabled(a,). Since at least one nonfaulty processor in 3 is non-
faulty in u, and also has the same local state at time I since 9(u, 1) = 9(s, 1),
we have (a, 1) '.- (u, 1). Therefore, (r, 1) .- (u, 1) and (u, 1) V- enabled(a,),
and it follows that (r,A) = Cgenabled(a).

We now describe the algorithm Ai in greater detail. Notice that since C
is practical, the input received by a processor in every round of a run of
E(n, t) is of constant size, and hence it is possible to construct the labeled
communication graph of any point of E(n, t) in polynomial space.

The algorithm Ai first guesses the point (3, 1) and writes it down in poly-
nomial space. Since enabled(a) is a practical fact, Ai can show in polynomial
time (and hence in polynomial space) that 9(a, 1) D enabled(a) is not valid
in the system E(n, t).

The algorithm then guesses the path from (r, 1) to (a, 1) in the similarity
graph step by step, verifying each step in polynomial-space as it goes. The
algorithm Ai begins by constructing the graph g(r', 1) of a run r' by adding
to the graph 9j(r, 1) received as input all edges not recorded as missing in
Gj(r, 1). Notice that since pj is nonfaulty in r, it is nonfaulty in r' as well,
and hence (r, 1) - (r', 1). The algorithm A, then shows that (r', 1) - (a, 1)
(and hence that (r, 1) (a, 1)) in polynomial space by constructing one by
one the graph g(ui,t) of each point (ui,t) in a path from (r',A) to (a,t)
in the similarity graph. For each pair of points (ui_., 1) and (ui, 1), the
algorithm shows that some nonfaulty processor ph has the same local state
at both points by choosing pk, exhibiting for each point an assignment of
faulty processors (consistent with their respective graphs) in which p is
nonfaulty, and showing that pl, has the same local state at both points by
verifying Gui ) =

It is important to realize that Lemma 3.6 holds in all variants of the
omissions model: The failure model is a parameter of a simultaneous choice



3.5. TESTING FOR COMMON KNOWLEDGE 61

problem, and we have made no assumptions restricting the failure model in
this result. We note that the proof of Lemma 3.6 actually shows that testing
for common knowledge of any practical fact can be done in polynomial space.
In fact, the proof shows that such tests have effective implementations even
when the algorithm determining whether Q(r, 1) D enabled(ai) is valid does
not run in polynomial time (although the problem must still be decidable).
In this case, however, the test is guaranteed to run in polynomial space only
if this computation can be performed using polynomial space. The most
important consequence of Lemma 3.6, however, is that practical simultaneous
choice problems have polynomial-space optimal protocols.

Theorem 3.7: If C is an implementable practical simultaneous choice prob-
lem, then there is a polynomial-space optimal protocol for C.

With Theorem 3.7 we see that practical simultaneous choice problems
do have effective optimal protocols. In general, however, connected com-
ponents in the similarity graph may be of exponential size, and paths in
such components may be of exponential length. It therefore follows that
the polynomial-space protocol given by Theorem 3.7 requires the processors
to perform exponential-time computations between consecutive rounds of
communication. The resulting protocol is therefore clearly not a reasonable
protocol to use in practice. A crucial question at this point is whether there
are efficient optimal protocols for simultaneous choice problems. Recall that
we have already seen that optimal protocols can be implemented in a way
that makes efficient use of communication. The rest of the chapter is de-
voted to investigating ways of implementing tests for common knowledge in
variants of the omissions model in a computationally-efficient manner, and
therefore of implementing efficient, optimal protocols for simultaneous choice
problems in these models.

3.5.1 The Omissions Model

Recall that in the omission model a faulty processor may fail only by failing
to send some of the messages its protocol requires it to send. In this sec-
tion we consider the problem of efficiently implementing tests for common
knowledge in the omissions failure model. In particular, we develop a con-
struction that crisply characterizes the connected component of a point in
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the similarity graph. This construction determines a subgraph of the labeled
communication graph with the property that two points are similar if their
respective subgraphs are identical. As stated in Theorem 2.3, the connected
component of a point in the similarity graph completely determines what
facts are common knowledge at that point. As a result, this construction
enables us to devise efficient tests for common knowledge, and hence efficient
protocols for simultaneous choice problems that are optimal in all runs.

Dwork and Moses address in [DM86] the problem of implementing tests
for common knowledge in the crash failure model. In the crash failure model,
processors fail by crashing; that is, faulty processors may successfully send
messages to some processors during their failing round, but will not success-
fully send any messages in any later round, As a result, a faulty processor
is "out of the game" after its failing round, and no longer contributes to the
knowledge of the remaining processors. The analysis performed by Dwork
and Moses focuses on the notion of a clean round, a round in which no pro-
cessor failure is discovered. In runs of a full-information protocol, a clean
round ensures that all nonfaulty processors receive the same set of messages.
After such a round, all nonfaulty processors have an identical view of the part
of the run that precedes the clean round. Dwork and Moses show that facts
about the initial configuration become common knowledge exactly when it
becomes common knowledge a clean round has occurred. Dwork and Moses
complete their analysis by characterizing when this happens. In the omis-
sions model, however, because a faulty processor need not remain silent, or
crash, after first failing to send a message), a faulty processor may continue
to contribute to the knowledge of the nonfaulty processors, even after its first
failing round. The situation is therefore more complicated, and clean rounds
no longer play the same role here as they do in the crash failure model. Fur-
thermore, to the best of our understanding, there is no direct analog to the
notion of a clean round in the omissions model. The approach used by Dwork
and Moses in the crash failure model, therefore, does not seem to extend to
this model. As a result, we are forced to take a different approach.5

5As mentioned in the introduction, since the technical details of the proofs in this
section may make it difficult to obtain a high-level understanding of our approach, we
encourage the reader to skip the proofs on the first reading.
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The Basic Steps

We now give what will become the two basic steps of our test for common
knowledge during runs of a full-information protocol in the omissions model.
(Unless otherwise mentioned, all protocols referred to in this section will
be full-information protocols.) Our approach to the problem of testing for
common knowledge is motivated by a careful analysis of what facts do not
become common knowledge. We begin with a technical result, similar to
Lemma 15 of [DM86], saying that two points are similar if they differ only
in the faulty behavior exhibited by a single processor in the last few rounds.

Throughout the remainder of this chapter it will be convenient to refer
to runs differing only in some aspect of their operating environments. Given
two runs r and r' of a protocol F, we will say that r differs from r' only in a
certain aspect of the operating environment if r is the result of executing.F in
an operating environment that differs from that of r' only in the said aspect.
Notice that while their operating environments may be similar, the messages
sent in the two runs may actually be quite different. We say that a processor
is silent from time k if it fails to send every message in every round following
time k.

Lemma 3.8: Let r and r' be runs differing only in the (faulty) behavior
displayed by processor p after time k, and suppose no more than f processors
fail in either r or r'. If I - k s t + 1 - f, then (r,I) - (r',t).

Proof: If k > I then G(r, 1) = G(r', 1), and Lemma 3.5 implies that
(r, 1) - (r', 1). Therefore, assume k < L We proceed by induction on
j = I - k. Without loss of generality, we may assume that r and r' ac-
tually differ in the faulty behavior of p, and hence that p fails in one of these
runs. Notice that since p already fails in one of these runs and yet no more
than f processors fail in either run, it is clear that at most f < t processors
fail in any run differing from either run only in the faulty behavior of p.

Suppose j = 1 (that is, k = I - 1). Since t < n - 2 and since r and r'
differ only in the behavior of p, there are two processors q, and q2 (other
than p) that do not fail in either run. Let r2 be the run differing from r only
in that p sends to q2 during round of t2 iff it does so in r' (and notice that r2
may actually be equal to r). Since q1's local state at time t is independent of
whether p sends to q2 during round 1, we have (r, I) (r2, I). Since G(r 2 , I)
and G(r', I) differ only in the messages that p sends to processors other than q2
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in round t, and q2's local state at (r2, 1) is independent of whether p sends
to the remaining processors during round t, we have (r2, 1) - (r', 1). Thus,
by the transitivity of "-," we have (r, 1) - (r', 1).

Suppose j > 1 (that is, k < I - 1) and the inductive hypothesis holds
for j - 1. Let ri be the run differing from r only in that for each processor q
in {p,... ,pi} processor p sends to q during round k + 1 in rn iff it does so
in r'. Notice that r = r0. We will show that (r,I) - (ri,I) for all i > 0.
Since r,, differs from r' only in the faulty behavior of p after time k + 1,
and since I - (k + 1) = j - 1, it will follow by the inductive hypothesis for
j - 1 that (r,, 1) - (r', 1). Finally, by the transitivity of "-," we will have
(r, 1) ~ (r', 1) as desired.

We now proceed by induction on i to show that (T, 1) - (re, 1) for all i > 0.
The case of i = 0 is trivial. Suppose i > 0 and the inductive hypothesis
holds for i - 1; that is, (r,1) - (n-1, ). Notice n-1 and ; differ at most
in whether p sends a message to pi during rcnd k + 1. Let a be the run
differing from ri-1 in that pi is silent from time k + 1 in a. Suppose no more
than g processors fail in either n-I or a. Notice that g _5 f + 1. Therefore,
since 1 < I - k < t + 1 - f we have f < t and g _5 t, so at most t processors
fail in s. Furthermore, I - (k + 1) _ t + 1 - (f + 1) t + 1 - g. Since, in
addition, n-I and a differ only in the faulty behavior of pi after time k + 1,
the inductive hypothesis for j - 1 implies (ri-l, ) - (a, ). Now, since pi is
silent from time k + 1 in a, the local state of a nonfaulty processor at (s, 1)
is independent of whether p sends to pi during round k + 1, so (a, 1) , (a', 1)
where s' differs from a in that p sends to pi during round k + 1 in s' iff it does
so in ri. Again, the inductive hypothesis for j - 1 implies that (a', 1) - (r1 , 1).
By the transitivity of "-," it follows that (r, 1) , (ri, 1). 1]

While Lemma 3.8 is a technical lemma in the context of this work, it
has a number of interesting consequences in its own right. In particular, the
(t + 1)-round lower bound on the number of rounds required for simultaneous
Byzantine agreement is an immediate corollary of this lemma. The resulting
proof of this lower bound is perhaps the simplest to appear in the litera-
ture (see [DM86] for details). More important for our purposes, however,
is the fact that two corollaries of Lemma 3.8 enable us to characterize the
connected components of the similsaritv grsiph. Consider the rns r. and r2
of Figure 3.2, where we indicate only faulty behavior: solid lines indicate
silence, and dashed lines indicate sporadic faulty behavior. Notice that f
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Figure 3.2: Runs illustrating Lemma 3.9.

processors fail in r 1 . In the following lemma we show that (r, 1) ',' (r2,1)
where r2 differs from r, only in that processors failing in r, are silent in r2
from time k, where k = 1 - (t + 1 - f). This is the first basic step of our
test for common knowledge.

Lemma 3.9: Let r, be a run in which f processors fail. Let r2 be the run
differing from ri only in that processors failing in r, are silent from time h
in r2, where k = I - (t + 1 - f). Then (ri,1) -, (r2,1).

Proof: Let q,,...,qf be the faulty processors in rl. Let as be the run
differing from ri in that processors q ,..., qi are silent from time k in 8,.
Notice that r, = 80 and r2 = Of. We proceed by induction on i to show that
(ri,1) - (si,I) for all i. The case of i = 0 is trivial. Suppose i > 0 and the
inductive hypothesis holds for i - 1; that is, (ri,t) - (sa-1,,1). Since 8,i
and si differ at most in the faulty behavior of qi after time k, it follows
by Lemma 3.8 that (si_, 1) - (a,, 1). By the transitivity of "'-," we have
(r, 1) ~ (s,,,,.). []

One interesting consequence of this result, for example, is that the states
at time h of processors failing in r, are not common knowledge at time 1.
To see this, let F be the set of processors failing in rl, and suppose it is
common knowledge at (ri, 1) that "the joint view of F at time k is equal
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to riF(k)." This means that this statement is true at all points in (ri,l)'s
connected component. But let r' and r' be runs differing from ri and r2
only in that some already-faulty processor p E F fails to send to another
already-faulty processor q E F during round k. Notice that the joint view
of F at time k in r' is not equal to rF(k). Yet according to our lemma,
(ri, ) - (r 2, 1) and (r', l) e- (r', t); and since the processors in F are silent
from time k, the points (r2, t) and (r', 1) are indistinguishable to all nonfaulty
processors; and so (r2,1) ( 1,1), which implies (ri,I) - (r,t,), and hence
(r1 , t) and (r', 1) are in the same connected component! Consequently, the
time k views of processors in the set F cannot be common knowledge at
(r,l). Interestingly, our next result will show that even the identity of F
itself (the identity of the faulty processors) may not be common knowledge
at (rT,I).

Before discussing the second lemma, however, we make an important
definition. Given a point (r, k) and a set of processors G, let

B(G,r, k) 4' {p: (r, k) 1 IG( ' is faulty")}.

By this definition, B(G, r, k) is the set of processors implicitly known by G
at (r, k) to be faulty. An important property of the omissions failure model
is that processors fail only by failing to send messages. It follows that G
implicitly knows at (r, k) that a processor p is faulty iff G implicitly knows
at (r, k) of some processor q not receiving a message from p at time k or
earlier; that is, gG(r, k) contains no edge from (p, I - 1) to (q, 1) for some
node (q, 1) of gG(r, k). It is therefore simple and straightforward to compute
B(G,T, k) given gG(r, k).

The essence of the second lemma is captured by the runs r2 and r3 of
Figure 3.3. In the run r2, the f faulty processors are silent from time k =
1-(t+l-f). The set G is the set of nonfaulty processors and B = B(G, r2, k).
The run r3 differs from r2 only in that processors in P - B do not fail in r3.
The following lemma states that (r2, 1) - (r3 , 1). This implies, for instance,
chat the failure of processors in P-B cannot be common knowledge at (r2, 1)

since they do not fail in r3. Formally, the second basic step of our test for
common knowledge can be stated as follows (see Figure 3.3):

Lemma 3.10: Let r2 be a run in which the f faulty processors are silent
from time k = I - (t + 1 - f). Let G be the set of nonfaulty processors in



3.5. TESTING FOR COMMON KNOWLEDGE 67

B

Jo t k t

t + 1- f

The run r2. The run r3.

Figure 3.3: Runs illustrating Lemma 3.10.

r2, and let B = B(G, r 2, k). Let r3 be the run differing from r2 only in that
processors in P - B do not fail. Then (r2,1) ,-, (r3,1).

Proof: If a processor p in P - B fails to a processor q during some round
j <_ k of r2 (in which case it must be that p E P- B-G), then the node (q,j)
must not be a node of QG(r2, k) or the failure of p would be implicitly known
by G at time k and p would be in B, a contradiction. Thus, QG(r2, k) is
independent of whether g(r2, k) contains an edge from p to q during round j.
Let r' be a run differing from r2 only in that no processor in P - B fails
before time k in r'. By the previous discussion, GG(r2, k) = 9G(r', k). In
both r2 and r' every processor in G successfully sends every message after
time k and every processor in P - G is silent from time k. Since, in addition,
every processor in G receives the same input after time k in r2 and r2, we
have gG(r 2, 1) = gu(r', 1). Given that G is the set of nonfaulty processors
in r2, each of which is also nonfaulty in r2, it follows by Lemma 3.5 that
(r2,1) (r', 1). Since the runs r' and r3 differ only in the faulty behavior of
processors in P - B after time k, by repeated application of Lemma 3.8 it
follows that (r,1) - (r3,1). Hence, (r2,1) '- (3, 1). 0
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Characterizing the Similarity Graph

Let us now consider how these two basic steps, Lemmas 3.9 and 3.10, can
be used to characterize the connected components of the similarity graph,
and hence what facts are common knowledge at a given point. Going back
to Figures 3.2 and 3.3, notice that if f' < f (which implies, referring to Fig-
ure 3.3, that not all f processors failing in ri are implicitly known at time
k = I - (t + 1 - f) to be faulty), then by setting r' = rs we can apply Lem-
mas 3.9 and 3.10 again (this time starting from r' instead of Ti). Iterating
this process, we reach a run i satisfying (ri,1) - ( ,1), where the f proces-
sors failing in i are silent from time k I I - (t + 1 - f), and where all faulty
processors are implicitly known to be faulty by the nonfaulty processors at
( , ). This run i is a fixpoint of this iterative process; setting i = , the
runs T2 and i3 constructed in Lemmas 3.9 and 3.10 are identical to f. It is
the joint view of the nonfaulty processors at ( ), ,we will show, that charac-
terizes the connected component of (ri, 1) in the similarity graph, and hence
what facts are common knowledge at (ri, 1). To enable ourselves to turn this
characterization into a test for common knowledge individual processors can
compute locally, we now define a local version of this iterative process, illus-
trated in Figure 3.4, that individual processors can use to construct locally
this joint view.

Given a point (r, 1) and a processor p, this construction is defined as
follows. Define Go = {p} and ko = 1, and define Gi+1 and k,+1 inductively
as follows. Denoting B(Gi, r, k) by Bi, let

Gi+1 = P - Bi

k-1= I - (t + 1 - IB I).

One should ask what happens to this construction when k,+1 becomes nega-
tive. Recall that when ki+1 < 0, the local state at time ki+1 of every processor
in Gi+1 is the distinguished empty local state. It follows that when k,+1 < 0,
the set Bi+1 must be empty. As a consequence, for all j > i + 1, we have
that G = P k = I -(t+ 1), and Bj is empty.

While we claim this is a construction each processor can perform locally,
the~o O sto A.'CkU, RUS As %A= A"1 V- o, wIh ini^ da prcsr "-
not possibly know. We will soon show, however, that individual processors
have enough information in their local state to compute B(G, r, k,) without
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Figure 3.4: An example of the construction when t = 9.

knowing the precise identity of r, and hence can perform the steps of this
construction locally.

The construction determines three (infinite) sequences {G,}, {ki}, and
{Bi}. In the next few pages we will see that these sequences have limits
G, k, and B, and that these limits are independent of the processor with
which the construction is begun. As a result, individual processors will be
able to construct these values based solely on their local state. We will
see that the joint view of 6 at time k completely characterizes the connected
component of (r, 1) in the similarity graph, and hence what facts are common
knowledge at (r, 1). This construction will therefore provide an efficient way
of determining what facts are common knowledge at a given point.

Among other things, this construction captures a number of essential
aspects of the information flow during the run up to time 1. In particular,
one important property of this construction is the following:

Lemma 3.11: Every processor in Gi+1 successfully sends to every processor
in Gi in every round before time ki.
Proof: Suppose some processor q of G"' "ii "osn oatcesrq fG

during a round before time ki. Then q's failure to q' is implicitly known by Gi
at time ki, so q E Bi and q Gi+1, a contradiction. 13
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One consequence of Lemma 3.11 is that the local state of the processor p
at time I must contain the local state of every processor in Gi at time ki
for every i > 0. One property of the construction, therefore, is that the
construction depends only on the local state of processor p at (rl), and
hence that p is able to perform the construction locally. This property is
essential in order to use this construction in a test for common knowledge
that p can perform locally. A second essential property of the construction is
that it converges within t + 1 iterations, as we see with the following result.

Lemma 3.12: lim Gi = Gt+l and .lim k = kt+i.
i-4#00 1i-00

Proof: We will show that Bi+, C Bi for all i > 0. Since B0 contains at
most t processors, it will then follow that there must be an i < t for which
Bi = Bi+1. From the definition of the construction, it is easy to see that we
will have Bi = B+j for all j > 0. In addition, we will have Gi+1 = Gi+,+j
and kj+j = ki+1+j for all j >_ 0, and we will be done. We proceed by induction
on i. If kj+j < 0, then Bi+, is empty and Bi+, C Bi, so let us assume ki+l > 0.
Suppose i = 0. By Lemma 3.11, every processor in G, must send to every
processor in G0 during round k, + 1. It follows that any failure implicitly
known by G1 at time k, must be implicitly known by Go at time ko. Thus,
B1 C B0. Suppose i > 0 and the inductive hypothesis holds for i - 1; that
is, Bi C B- 1. If Bi = Bi-,, then Bi+, = Bi. If Bi C Bi-,, then k,+1 < k.
By Lemma 3.11, Gj+j sends to GC during round ki+j + 1, so Bi+, g Bi. Dl

We denote the results of the construction (the limits of the sequences
{Gj}, {ki}, and {Bi}) by C, k, and b. We denote these values by G(p,r,I),
k(pir, 1), and B(p, r,i) when the processor p and the point (r, 1) are not clear
from context. We now show, however, that these values are independent of
the processor p.

Lemma 3.13: G(p, r,I) = G(q,r,I) and k(p, r,t) = k(q,r,I) for all proces-
sors p and q.

Proof: We prove the claim by showing that b(p, r,t) = B(q,r,I). Given
that Bi uniquely determines Gj+j and ki+l, this will imply the desired result.
.Lt, %~li~.. CL&Wn _UW.. '_ p, .. ij .----

follow by symmetry. Denote the intermediate results of the construction
from the point (r, 1) starting with the processor p by GC, ki, and Bi, and the



3.5. TESTING FOR COMMON KNOWLEDGE 71

final results by 6, kC, and b. Similarly, denote the intermediate results of
the construction starting with q by G , kf, and Bf, and the final results by
C', k', and '. We now show that B C B'. If k < 0, then B is empty and
b C_ B', so assume k > 0. We consider two cases. First, suppose k = I - 1.
In this case, B must contain t faulty processors since k = I - (t + 1 - I0).
It follows that every processor in C must be nonfaulty in r and hence must
send to G' during round k + 1, so A C Bo. Since, in addition, IBM[ <t and
I/I = t, we have BA = Bo. It follows from the construction that B B i' for
every i > 0, and hence that b = B'.

Now, suppose k < I - 1. Let q' be an (arbitrary) nonfaulty processor
in r. We claim that every processor g in 6 must send its local state to q'
during round k + 1. Suppose some processor g in 6 does not. Let j be the
least integer such that 6 = Gj. If j = 1, then q' must send to Go during
round k + 2. If j > 1, then q' must actually be a member of Gj- 1 since Gj- 1
must contain all of the nonfaulty processors. In either case, the failure of g
to q' during round k + 1 must be implicitly known by Gj- 1 at time kj- 1, so
g E Bj- 1. Since G = Gj = P - B- 1, we have g G, a contradiction. Thus,
every processor in 6 must send to q' during round k + 1.

We now proceed by induction on i to show that B C Bi' for all i > 0.
Suppose i = 0. Every processor in 6 must send to the nonfaulty processor q'
during round k + 1, and q' must send to Go during round k + 2, so B C Bo.
Suppose i > 0 and the inductive hypothesis holds for i - 1; that is, B C B'
IfB = B'_,, then A = B'. IfB C B'_,, then k < kl since k = l-(t+1- lIl)
and k = I - (t + 1- IBi1 1). Every processor in 6 must send to the nonfaulty
processor q' during round k + 1, and q' must be contained in G , so A C Bi'.
It follows that f C B i for all i > 0, and henceC'.

As a result of Lemma 3.13, we see that G, k, and b depend only on the
point (r, 1), and not the processor with which the construction begins. Thus,
a third property of this construction is that every processor (and not just the
nonfaulty processors) is able to compute locally the values of C, k^, and B.
The ability of the nonfaulty processors to compute these values locally will
be essential to designing a locally-computable test for common knowledge.
We will denote these values by 6(r, I), k(r, I), and &(r, 1) when (r, 1) is not
Clear Lom conLexi. From the efaenmuon of The construction A is clear that the
driving force behind the construction is the identity of the sets Bi. Notice
that these sets are uniquely determined by the failure pattern, and do not
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depend on the run's input. Taking into account the input of a run, we are
now in a position to show how the construction characterizes the connected
components in the similarity graph. Denoting 6(r, 1) by 6 and k(r, 1) by k,
we define

This definition says that v (r, 1) is the joint view of the processors in G(r, 1)
at time k(r, 1). Our next lemma states that Q is the same at similar points,
which implies that the joint view Vr(r, 1) is common knowledge at (r, 1).

Lemma 3.14: If (r,1) -. (r',1) then Vr(r,1)= '(r', ).

Proof: We proceed by induction on the distance d between the points
(r,1) and (r',I). The case of d = 0 is trivial. Suppose that d > 0 and the
inductive hypothesis holds for d - 1. Since the distance between (r, 1) and
(T,I) is d, there must be a point (s,1) whose distance from (r,1) is d - 1,
and whose distance from (r', 1) is 1. The inductive hypothesis implies that

r(r, 1) = r(,, 1), and we have v(p, s,1) = v(p, r', 1) for some processor p. As
a consequence of Lemmas 3.11 and 3.13, the values of V(s, I) and fJ(r', I)
depend only on the local state of p at (a,1) and (r', 1), respectively. Since
p has the same local state at (s,1) and at (r',1), we have V(s,1) = V(r',1).
Since V(r,1) = V(a,1), it follows that V(r, 1) = V(r',1). 13

One consequence of Lemma 3.14, together with Lemma 3.5 and the def-
inition of I' above, is that if (r, t) , (rl', 1), then g.(r, k) = 96(r', k). We
will find this a useful fact when proving the converse of Lemma 3.14; that
is, that all points with the same V are similar, and hence that V completely
characterizes the connected components of the similarity graph. Before we
do so, however, let us formalize the intuition that led us to the construction
in the first place (the use of the two basic steps in the construction given by
Lemmas 3.9 and 3.10).

Lemma 3.15: Let r be a run, and let G, k, and B be the results of the
construction from (r, t). Let r' be the run differing from r only in that
processors in G do not fail in r' and processors in B are silent from time I
in r'. Then (r, 1) - (r',1).

Proof: Let Gi, ki, and Bi be the intermediate results of the construction
from (r, 1) starting with the nonfaulty processor pj. For i > 0, define ri to
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be the run differing from the run r only in that processors in Bi are silent
from time ki in ri and the remaining processors do not fail in ri. Notice
that r' = ri for sufficiently large i. We proceed by induction on i to show
that (r, 1) - (r, 1) for all i > 0. Suppose i = 0. Since the subgraph gj(r, 1)
must be independent of whether the graph 9(r, t) is missing an edge from a
processor in P-B 0 to a processor other than pj, we have gj(r, 1) = gj(r0 , k0).
Since processor p, is nonfaulty, it follows that (r, 1) - (to, 1). Suppose i >
0 and the inductive hypothesis holds for i - 1; that is, (r,1) - (ri-l).
Lemma 3.9 implies (ri-ti, I) "~ S 1) where r'_l differs from rTi-1 in that
processors in B- 1 (the processors failing in ri-1) are silent from time k,
in r_,. Lemma 3.10 implies (r_ - (r,1). Thus, (r,1) (r,1). EJ

Finally, we have the following:

Lemma 3.16: If V7(r,1) = Ir(r',1) then (r, 1) - (r',1).

Proof: The fact 1'(r, 1) = Vr(r',e) implies d(r,1) = d(r',1), k(r,t) =

k(r',t), and b(r,i) = B(r',t). We therefore denote these values by G, k,
and B. Let s be a run that differs from r in that processors in G do not
fail in s, and processors in B are silent from time k in a. Let s' be an
analogous run with respect to r'. Lemma 3.15 implies that (r, t) -,' (8,1) and
(r',1) - (s',t). In order to show that (r,1) - (r',1), it is enough to show
that (a, 1) - (s', 1). Suppose G = {q,, ... , qm}, and let si be the run differing
from s in that q ,..., qi receive the same input after time k in Bi as they do
in a'. We proceed by induction on i to show that (s,1) - (si,t) for all i > 0.
Since s = so, the case of i = 0 is trivial. Suppose i > 0 and the inductive
hypothesis holds for i - 1; that is, (s,t) - (St-l,t). Let u.- 1 and ui be runs
differing from si-I and si, respectively, only in that qi is silent from time k
in ui-1 and ui. Lemma 3.8 implies (si-1, ) -, (ui-,, 1) and (si, 1) -, (ui,1). In
addition, since ui-1 and ui differ only in the input received by q after time k,
and since qi is silent from time k in both runs, we have (ui-, I) - (ui, I).
Thus, (8,1) - (si,A) for all i > 0. In particular, (s,1) (s,' ( ,,1). In order
to complete the proof, it now suffices to show that ( -,1) .. ' (s', 1). Since
gd(r, k) = 96(r', k), (r,I) - (a,1), and (r',1) - (a',1), Lemma 3.14 implies
that 6(s, k) = g(s', k). Notice that g6(s,, k) = go(s, k) = Qd(s, k).
Notice. in addition: that processors in G do not fail in either A- or At. and that
the remaining processors (in B) are silent from time k in both runs. Finally,
notice that processors in G receive the same input after time k in both runs.
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It follows that 96(sm,,t) = 9(s',I), and hence that (sm,) - (s',I). Thus,
(a, t) - (a', t), as desired. 0

Combining Lemmas 3.14 and 3.16 we see that (r,t) - (r',t) if! '(r,) =
V(r', 1). We therefore have:

Theorem 3.17: (r,I) = CmV iff (r',I) 1= for all r' satisfying Vk(r,I)
('(r', 1).

Consequently, our local construction completely characterizes the connected
components of the similarity graph, and hence when facts become common
knowledge.

A Test for Common Knowledge

We now consider how this characterization gives rise to a test for common
knowledge that processors can compute locally.

From Theorem 3.17, it follows that V (r, 1) in a precise sense summarizes
and uniquely determines the set of facts that are common knowledge at any
given point (r, 1). The identity of f/ has two components: the failure pattern
and input pattern during some prefix of the run. The fact that V becomes
common knowledge implies that certain information about the failure pattern
must become common knowledge. While it is the failure pattern alone that
determines what views are contained in V', it is difficult to characterize what
properties of the failure pattern lead to these views being chosen by the
construction, and hence what kinds of facts about the failure pattern become
common knowledge. On the other hand, information about the input that
follows from the views in V does characterize in a crisp way what facts about
the input are common knowledge. Furthermore, it is easy to deduce from

' whether the existence of a failure is common knowledge. As the following
corollary will show, Theorem 3.17 implies that facts about the input and
existence of failures that are common knowledge at the point (r, 1) must
follow directly from the set '(r, 1). We now make this statement precise. A
run r, a set of processors G, and a time k determine a joint view V =?rG(k).
We denote by "V" the property of being a run in which the processors in G
have the joint view V at time k (notice that G and k are uniquely determined

I . ' "A ' 1 ifr /11\_ TT. MtL- !.V Tr .- !- -I -by v). in other words, (r, x) v " 7G, - .IL----LUD, IL V -J Y -L u '

the system, then every run r' satisfying r'(k) = V must also satisfy V. We
now have:
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Corollary 3.18: Let V be a fact about the input and the existence of fail-
ures, and let V = V(r,Z). Then (r,1) H Cjvp iff V D V is valid in the
system.

Proof: Suppose V D V is valid in the system. By Lemma 3.14, we
have f7(r, 1) = V(r', 1) for all runs r' such that (r, 1) - (r', 1), and hence that
(r', 1)1= V for all such r'. Given that V D V is valid in the system, we have
(r', 1) = for all such r'. It follows that (r, 1) H CAgp.

For the other direction, suppose that V D cp is not valid in the system.
Since V D W is not valid in the system, let u be a run such that (u, 1) [ V
and yet (u, 1) V V. We will construct a run a such that (r, 1) - (a, 1), a and u
have the same input, and a and u are the same with respect to the existence
of failures (i.e., s will be failure-free iff u is). Since p is a fact about the
input and the existence of failures, (u, 1) K V will imply (a,1) p. Since, in
addition, (r,1)- (a,1), we will have that (r,1) V= Cp.

We construct s in two steps. We first construct a run v with the input of u
satisfying (r, t) - (v, 1). Let v be the run with the failure pattern of r and
the input of u. Given that r and v have the same failure pattern, and that 6
and k depend only on the failure pattern, we have that G(r, 1) = G(v, 1) and
k(r, 1) = k(v, 1). Let us denote these valaes by G and k. Since (u, t) H V,
we have v(G, r, k) = v(G, u, k), and hence 96(r, k) k Q¢(u,h). Since v and r
have the same failure pattern, the unlabeled graphs underlying Gdv, k) and
96(r, k) (and hence also !9(u, k)) are the same. Furthermore, since v and u
have the same input, it follows that Q6(v, k) and k(u,A) (and hence also
g6(r, k)) are equal. Since !(r, k) = 96(v, k) implies Vr(r, 1) = Vr(v, 1), we
have (r, 1) ~ (v,1) by Lemma 3.lt.

We now consider the existence of failures, and construct the desired run a.
If there is a failure in u, then let a be a run differing from v only in that a
processor fails after time I in a. Clearly (v,l) - (a,1), and hence (r,l)
(3, 1). Conversely, if u is failure-free, then let a = u. Since u is failure-free,
no processor in C knows of a failure at time k in u. Since processors in G
have the same local state at time k in both u and r, the same is true of r.
It follows that B = B(G,r,k) is empty, and since C = P - B, we have
that G = P. Notice that s dilters from v only in that processors in (i = P
do not fail in s, and hence that (v,l) - (a,l) by Lemma 3.15. Therefore,
(r,1) - (a,1). In either case, (r,t) , (a,1), a and u have the same input,
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and are the same with respect to the existence of failures. It follows by the
above discussion that (r, 1) V'= C,-p. []

Corollary 3.18 summarizes the sense in which the construction allows us
to test whether relevant facts are common knowledge at a given point. Let
us consider the computational complexity of performing such tests. The
first step in applying Corollary 3.18 to determine whether a fact is common
knowledge at (r, 1) is to construct V'(r, 1). Recall that a group of proces-
sors implicitly knows that a processor is faulty iff it knows of a message the
processor failed to send. This is an easy fact to check given the communi-
cation graph corresponding to the group's view. It follows that computing
every iteration of the construction can easily be done in polynomial time.
Furthermore, since the construction is guaranteed to converge within t + 1
iterations, it follows that G and k, and hence also V can be computed locally
in polynomial time (as long as V is of polynomial size). Recall that if W is
a practical fact, then it is possible to determine in polynomial time whether
or not V D W is valid in the system. Thus, given a practical simultaneous
choice problem C, one polynomial-time implementation of a test for com-
mon knowledge of enabled(a) is to construct the set V = V and determine
whether V D enabled(c,) is valid in the system. As a result, Theorem 3.4
implies the following:

Theorem 3.19: If C is an implementable, practical simultaneous choice,
then there is a polynomial-time optimal protocol for C.

Discussion

We reiterate the fact that the resulting protocol for C is optimal in all runs:
actions are performed in runs of .Fc as soon as they could possibly be per-
formed in runs of any other protocol, given the operating environment of the
run. Thus, for example, simultaneous Byzantine agreement is performed in
anywhere between 2 and t + 1 rounds, depending on the pattern of failures
(as is shown in [DM86] to be the case in the crash failure model). Similarly,
the firing squad problem can be performed in anywhere between 1 and t-+ 1
rounds aret a "stlart" signal is :"-ceiveL A. -..,,L :_.Y An , .WA

the simultaneous actions can be performed quickly only when many failures
become known to the nonfaulty processors. In particular, if there are no
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failures, no fact about the input is common knowledge less than t + 1 rounds
after it is first determined to hold.

Recall that every processor, faulty or nonfaulty, is able to compute the
set Q/(r, 1) locally. As a result, the following proposition shows that a fact is
common knowledge to the nonfaulty processors iff it is common knowledge
to all processors.

Proposition 3.20: Let (p be an arbitrary fact. In the omissio)ns model,
Co - CVo is valid in all systems running a full-information protocol.

Proof: By Theorem 2.3, it is enougb to show that (r,I) ' (r',I) iff (rt) v
(r', 1) for all runs r and r' and times 1. The 'if' direction is trivial, since M c
P. The proof of the other direction is identical to the proof of Lemma 3.14,
interpreting - as 4,. C

Proposition 3.20 implies that all processors (even the faulty processors)
know exactly what actions are commonly known to be enabled in runs of Jl .
Thus, in this model the protocol F, is guaranteed to satisfy a stronger version
of simultaneous choice problems, in which condlition (ii) is replaced by

(ii') if aj is performed by any processor (faulty or nonfaulty), then it is
performed by all processors simultaneously.

Furthermore, since when an action is performed it is performed simultane-
ously by all processors, and since no other action is ever performed, there is
no need for processors to continue sending messages after performing actions
in runs of Y' in this model. We can therefore furtber reduce the communica-
tion of Yc by having processors halt after performing a simultaneous action.
As a result, the following is an optimal protocol for any implementable simul-
taneous choice problem C, an optimal protocol simpler than the protocol Fc:

repeat every round
send current local state to every processor

until C enabled(ai) holds for some ai;
i 4-- mm {i :Ggenabied(ai) holds}l;
perform a1 ;
halt.
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The fact that in the omissions model the information in V'(r, 1) is essen-
tially all that is common knowledge at a given point has interesting implica-
tions about the type of simultaneous actions that can be performed in this
model. For example, recall that in the traditional simultaneous Byzantine
agreement or consensus problems (see [PSL80, Fis83, DM86]), the processors
are only required to decide, say, v in case they all start with an initial value
of v. A stronger (and arguably more natural, or at least democratic) require-
ment, however, would require they decide v whenever the majority of initial
values are v. This is clearly impossible, since some processors may be silent
throughout the run. However, consider a protocol for simultaneous Byzan-
tine agreement which is similar to Yc , except that when some enabled(ai)
becomes common knowledge (which happens exactly when V becomes non-
empty), the processors choose the value that appears in the majority of the
initial values recorded in V(r, 1) as their decision value. In this case, the
processors actually approximate majority fairly well: If more than (n + t)/2
of the initial values are v, then v will be chosen. In fact, we can show that
the approximation is bad only in runs in which agreement is obtained early.
In particular, if agreement cannot be obtained before time t + 1 (this would
happen in runs r for which V(r, 1) contains only empty local states for every
" < t), then the value agreed upon would be the majority value in case more
than (n + 1)/2 of the processors have the same initial value. Furthermore, a
protocol for weak (exact) majority does exist: A protocol that either decides
that there was a failure or decides on the true majority value.

Since messages from faulty processors can convey new information about
the failure pattern, such messages do affect the construction. Therefore, the
behavior of faulty processors, even after they have been discovered to be
faulty, plays an important role in determining what facts become common
knowledge and when. In the crash failure model, however, a failed processor
does not communicate with other processors after its failing round and has
little impact on what facts become common knowledge. This is an essen-
tial property of the ;missions model distinguishing it from the crash failure
model.

We note, however, that all of the analysis in this subsection applies to the
crash failure model, with all of the proofs applying verbatim when restricted
to the crash failure model. We thus have:

Proposition 3.21: In the crash failure model, (r,t) 1= Cp iff it is the case



3.5. TESTING FOR COMMON KNOWLEDGE 79

that (r', 1) 1= W for all r' satisfying l(r, tf) = '(r',I).

Thus, the set V(r, 1) completely chararterizes what facts are common knowl-
edge at the point (r, 1) in the crash failure model as well. Since the same
proofs show that the construction characterizes the connected components of
the similarity graph in both the omissions and the crash failure model, the
similarity graph in the omissions model is simply an extension of the simi-
larity graph in the crash failure model obtained by adding nodes and edges
to the similarity graph in the crash failure model, not breaking up the con-
nected components appearing in the crash failure model. This implies that
in a run of the omission model having a failure pattern consistent with the
crash failure model, exactly the same facts about the input and the existence
of failures are common knowledge at any given time in both the crash failure
and the omissions model. (However, as a result of the difference in the types
of failures possible in the two failure models, different facts about the failure
pattern are common knowledge at the corresponding points.) Ruben Michel
has independently characterized the similarity graph in variants of the crash
failure model (see [Mic88]). For the crash failure model itself, he has an al-
ternative construction that also characterizes the connected components of
the similarity graph.

As in the omissions model, it follows from Proposition 3.21 that our
construction can be used to derive efficient optimal protocols for simultaneous
choice problems in the crash failure model, thus showing that results similar
to those proven in [DM86] in the crash model can be obtained in the omissions
model, although our techniques are quite different. We therefore have the
following:

Corollary 3.22: Let C be an implementable, practical simultaneous choice.
In the crash failure model, there is a polynomial-time optimal protocol for C.

As a final remark, let ki and G. be the intermediate results of beginting
the construction at the point (r, t), and denote v(Gi, r, ki) by V. Consid .r
the operator E defined by E(V) = V+j for all i. We find it interesting that V,
which is a fixed point of the operator 6, characterizes the facts o for which
Cgvo holds, where we know from [HM84] that CQo is a fixed point of Ey
(see Proposition 2.5). While researchers are used to thinking semantically
of common knowledge as a fixed point, this construction shows how we can
think combinatorially of common knowledge as a fixed point, as well.
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3.5.2 Receiving Omissions

In the omissions model, faulty processors fail only to send messages. In this
subsection, we consider the symmetric receiving omissions model, in which
faulty processors fail only to receive messages. While at first glance these
models seem quite similar, they are actually extremely different. In partic-
ular, we will see that testing for common knowledge in this model becomes
trivial. As a result, efficient optimal protocols for practical simultaneous
choice problems become completely trivial in this model.

One intriguing difference between the omissions model and the ieceiving
omissions model is the following. We have seen in the omissions model that in
some cases a fact (for example, the arrival of a "start" signal) does not become
common knowledge until as many as t + 1 rounds after it is first determined
to hold. Intuitively, the attainment of common knowledge is delayed by the
possibility that a processor might fail to send a message determining that the
fact holds. However, in the receiving omission model even faulty processors
send all messages required by the protocol. Since uonfaulty processors receive
all messages sent to them, in runs of a full-information protocol all nonfaulty
processors have a complete view of the first k rounds at time k + 1. We can
thus show the following:

Theorem 3.23: Let v be a fact about the first h rounds. In the receiving
omissions model, (r, k) 1= V iff (r, k + 1) 1= Cap.

The proof of this result depends on the notion of a fact being valid at time 4*:
A fact ' is said to be valid (in the system) at time k if for all runs r we have
(r, k) W '. We remark that the following variant of the induction rule holds:

If (P D Es is valid at time k,
then 'p D CsW is valid at time k.

Proof: Since W is a fact about the first k rounds, (r, k) I- (p iff (r, k + 1)
W. Thus, it is enough to show that (r, k + 1) 'p iff (r, k + 1) H CrV.
Notice that (r, k + 1) H Cg'p implies (r, k + 1) W '. Conversely, snppose
(r, k + 1) H So. During round k + 1 in r every processor sends its entire
ocal state to 0-1 processors, so at t:i-c + 1 -0--i o,,sr have -

complete view of the first k rounds of r. Since ' is a fact about the first
rounds, (r, k + 1) = EW. We have just shown that ' D Erip is vabdi at
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time k + 1, so Wp D CW is valid at time k + 1 as well. Thus, (r, k + 1) j= W
implies (r, k + 1) = Cgp. 0

As a consequence of Theorem 3.23, polynomial-time optimal protocols for
practical simultaneous choice problems are very simple in this model. Again,
by polynomial-time here we will mean polynomial in n, t, and the round
number A.

Corollary 3.24: Let C be an implementable, practical simultaneous choice.
In the receiving omissions model, there is a polynomial-time optimal protocol
for C.

Proof: Since C is implementable, Theorem 3.4 implies that Fc is an optimal
protocol for C. It remains to show that Fc can be implemented in polynomial
time. Since the messages sent by Fc can clearly be computed in polynomial
time, we need only show how to implement the tests for common knowledge
of the conditions enabled(a,) in polynomial time. We claim that (r, A) H
Cfenabled(a,) iff 9(r, I - 1) D enabled(ai) is valid in the system. Since C
is a practical simultaneous choice problem, determining whether g(r, I -

1) D enabled(a,) is valid in the system can be done in polynomial time.
As G(r, A - 1) can be determined by all nonfaulty processors at (r, A) in
polynomial-time, this will yield a polynomial-time implementation of a test
for common knowledge of enabled(aj), and we will be done. Suppose G(r, A -
1) D enabled(a,) is valid in the system. Theorem 3.23 implies that Q(r, A - 1)
is common knowledge at (r, A), and it follows that (r, A) H Cgenabled(a).
Conversely, suppose (r, A) H Cyenabled(ai). Let a be a run satisfying G(r,I-
1). A proof similar to the base case of Lemma 3.8 shows that (r, A) (s, ).
Since (r, A) = Cgenabled(ai), it follows that (8, A) 1= enabled(ai). Thus,
9(r, A - 1) D enabled(ai) is valid in the system, as desired. 1

The results of this section point out a number of interesting differences
between the omissions model and the receiving omissions model. For ex-
ample, consider the distributed firing squad problem. First, Theorem 3.23
implies that all nonfaulty processors are able to fire in the receiving omission
model exactly one round after the first "start" signal is received. Recall that
in the omissions model, firing may delayed as many as t + 1 rounds. Second,
since a faulty processor p might fail to receive all messages, it is not possible
to guarantee that p will ever fire following the receipt of a "start" signal
by a nonfaulty processor. In the omissions model we have shown that it is



82 CHAPTER 3. PROGRAMMING SIMULTANEOUS ACTIONS

possible to guarantee that all processors perform any action (e.g., "firing")
performed by the nonfaulty processors. Finally, notice that faulty processors
may sometimes be unable to halt, or terminate their participation in a dis-
tributed firing squad protocol, even long after the nonfaulty processors have
fired: A processor p receiving no messages or "start" signals at all can never
halt since at any point it is possible (according to p's local state) that it will
be the only processor in the system to receive a "start" signal. In this case,
optimal protocols must require the nonfaulty processors to fire one round
later, and hence p must be able to send this information to the nonfaulty
processors. In contrast, in the omissions model it is possible to guarantee
that all processors halt as soon as an action is performed in the system.
These remarks show that while at first glance the assignment of responsibil-
ity for undelivered messages to sending or to receiving processors may seem
arbitrary, the assignment has a dramatic effect on when facts become com-
mon knowledge, and hence on the behavior of optimal protocols. Since such
a simple modification of the omissions model results in the collapse of the
combinatorial structure underlying the model (witness Theorem 3.23), we
consider this to be an indication that the omissions model is not a robust
model of failure.

3.5.3 Generalized Omissions

We have just seen that the choice of whether sending or receiving proces-
sors are responsible for undelivered messages has a dramatic effect on the
structure of the omissions model. Consider, however, the generalized omis-
sions model, in which a faulty processor may fail both to send and to receive
messages. This section is concerned with the design of optimal protocols
for simultaneous choice problems in this model. We have seen that Theo-
rem 3.4 implies the protocol 'c is an optimal protocol in this model, and
that Theorem 3.7 implies this protocol can be implemented in polynomial-
space. As in previous sections, the remaining question is whether there are
efficient optimal protocols in this model. The principal result of this section
is that testing for common knowledge in the generalized omissions model is
NP-hard. Using the close relationship between common knowledge and si-
multaneous actions, we obtain as a corollary Lhal optimal protocols for most
any simultaneous choice problem in this model require processors to perform
NP-hard computations. Consequently, for example, in this model there can
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be no efficient optimal protocol for simultaneous Byzantine agreement or the
distributed firing squad problem. This is a dramatic difference between the
generalized omissions model and the more benign failure models, where, as
we have seen, efficient optimal protocols do exist.

One important difference between the generalized omissions model and
simpler variants of the omissions model is that in the generalized omissions
model undelivered messages do not necessarily identify the set of faulty pro-
cessors, but merely place constraints on their possible identities: Either the
sender or the intended receiver of every undelivered message must be faulty.
The faulty processors must therefore induce a "vertex cover" of the unde-
livered messages. Recall that in our analysis of the omissions failure model,
determining the number and the identity of the faulty processors given the
labeled communication graph of a point played a crucial role in characterizing
the facts that are common knowledge at a point. In that model, a processor
is known to be faulty iff it is known that a message it was supposed to send
was not delivered, a fact easily determined from the labeled communication
graph. In the generalized omissions model, however, even determining the
number (and not necessarily the identities) of processors implicitly known
to be faulty essentially involves computing the size of the minimal vertex
cover of a graph, a problem known to be NP-complete (see [GJ79]). It is
with this intuition that we now proceed to show that determining whether
certain facts are common knowledge is computationally prohibitive in the
generalized omissions model, assuming P#NP.

However, in order to study the complexity of testing for common knowl-
edge in the generalized omissions model in a meaningful way, we are once
again faced with the need to restrict our attention to a class of facts that
includes all of the facts that may arise in natural simultaneous choice prob-
lems, and excludes anomalous cases. For example, if V is valid in the system,
then so is Cgc, and testing whether V is common knowledge is a trivial task.
On the other hand, one can imagine facts involving excessive computational
complexity of a type irrelevant to simultaneous choice problems. Consider,
for instance, a fact (p with the property that the communication graph of any
point satisfying So encodes information allowing the solution of all problems
in NP of size smaller than the number of processors in the system. Whereas
it seems unlikely that such a fact exists, such a statement is probably very
hard to prove, and it is definitely not the business of this chapter to do so.

We are therefore led to make the following restriction. A fact V is said to
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be admissible within a class of systems running a full-information protocol if
(i) for all systems within this class neither o nor -'p is valid in the system,
and (ii) there is a polynomial-time algorithm explicitly constructing for each
system a labeled communication graph G(r, 1) of minimal length having the
property that g(r,l) D Wo is valid in the system. Condition (i) simply says
that in none of these systems is testing for (p completely trivial. Condition
(ii) says that in each of these systems it has to be easy to generate enough of a
communication graph to guarantee that (p is true at any point of any run with
this communication graph. The ability to generate such a graph will be used
to generate the graph we submit to a given test for common knowledge of Wo.
We say that a simultaneous choice problem C is admissible if each condition
enabled(ai) is admissible within the class of systems determined by a full-
information protocol and C. We claim that any natural simultaneous choice
is admissible. We can now state the fundamental result of this section which
says, loosely speaking, that testing for common knowledge of admissible facts
W,,... , W is NP-hard.

For given facts W ,...,. b (b > 1) and a class E, = {E(n,t) : > t+2}
of systems, define the decision problem of testing for common knowledge of
o,,... , pin E as follows: Given as input a graph Gj(r,l) corresponding
to pi's local state at a point (r, 1) of a system in E with n > 2t,l does

Lemma 3.25: Let W ,... , r be admissible, practical facts within a class EJ
of systems running a full-information protocol in the generalized omissions
model. The problem of testing for common knowledge of W,..., pb in I is
NP-hard (in n).

The proof of Lemma 3.25 will follow shortly. Notice, however, that t is
variable in the statement of this lemma, and in general may be O(n). The
proof of this result will not apply for a fixed t, nor to cases in which t is
restricted, say, to be O(log n). In any case, it will follow that any standard
implementation of our optimal knowledge-based protocols must be compu-
tationally intractable, unless P=NP. It is natural to ask whether this ineffi-
ciency is merely the result of having programmed our protocols using tests

eWe note that the condition n> 2! seems odd, but "iii slightly stronger f .mulat.. ,
testing for common knowledge is needed later when proving the intractability of optimal
protocols for simultaneous choice problems in this model.
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for common knowledge. It is conceivable, for instance, that there are opti-
mal protocols for admissible simultaneous choice problems in the generalized
omissions model that are computationally efficient. Intuitively, however, in
order to perform a simultaneous action, an optimal protocol 1' V. tst essen-
tially determine whether any of the conditions enabled(a) is comm n knowl-
edge. Corollary 3.3 implies that such a condition becomes common knowledge
during the corresponding run of a full-information protocol as soon as it does
during a run of P. Thus, an optimal protocol P must essentially determine
whether such a fact is common knowledge during the corresponding run of a
full-information protocol F. Since Lemma 3.25 implies that this problem is
NP-hard, computing the function P must be NP-hard as well. We now make
this argument precise.

Recall that a protocol is formally a function mapping n, t, and a proces-
sor's state to a list of the actions the processor should perform, followed by a
list of the messages it is required to send in the following round. We say that
a protocol is communication-efficient if in a system of n processors the size of
the messages each processor is required to send during round I is polynomial
in n and 1. In the following result we show that the problem of computing
the function corresponding to a communication-efficient optimal protocol for
a simultaneous choice problem is NP-hard. Hence, no such protocol can be
computationally efficient, unless P=NP.

For a given protocol P and class Z = {1E(n, t) : n > t + 2} of systems,
define the problem of computing P in EJ as follows: Given as input a graph
Gi(r, I) corresponding to pi's local state at a point (r, I) of a system in E,
output the list of messages pi is required by P to send at (r, 1), and output
the list of actions pi is required by ? to perform at (r, I).

Theorem 3.26: Let C be an admissible, practical simultaneous choice with
actions a,,..., ab, and let ? be a communication-efficient, optimal protocol
for C. Let E be the class of systems determined by P and C. There is
a Turing reduction from the problem of testing for common knowledge of
enabled(al),..., enabled(ab) in E to the problem of computing 'P in E. In
this sense, the problem of computing P in E is NP-hard (in n).

Proof: Notice that since ? is a protocol for C, the problem C must be im-
plementable, and Theorem 3.4 implies that the full-information protocol F,
must be an optimal protocol for C. Let E = {t(n, t) : n _: t + 2} be the
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class of systems determined by C and .F'. Since C is an admissible, practi-
cal simultaneous choice, each condition enabled(ai) must be an admissible,
practical fact within E. By Lemma 3.25, given the graph Q(r, 1) of a point
(r, 1) in a system E(n, t) with n > 2t, the problem of determining whether
(r,t) = Vi Cgenabled(ai) is NP-hard. We will exhibit a Turing reduction
from this problem to the problem of computing P; that is, given the graph
9(r, 1) of a point (r, 1) in a system E(n, t) with n > 2t, we will show how
to use P to determine in polynomial time whether (r,) [-- V, C.fenabled(a,).
Having exhibited such a reduction, we will have shown that the problem of
computing P is NP-hard.

Let r be a run of Y', in a system E(n, t) with n > 2t, and let a be the
corresponding run of P. It follows from the definition of Y', that (r, 1)1=
Vi Cyenabled(aj) iff the nonfaulty processors perform a simultaneous action
no later than tiue i in r. Since Y, and ? are both optimal protocols for C,
the nonfaulty processors perform simultaneous actions at the same times
during r and s. Since n > 2t, there must be at least t+1 nonfaulty processors
in both runs, so the nonfaulty processors simultaneously perform an action
no later than time I in either run iff t + 1 processors do so. Therefore,
(r, 1) Vi Cgenabled(a) iff t + 1 processors perform a simultaneous action
no later than time I in a.

One algorithm for determining whether t + 1 processors do perform a
simultaneous action no later than time I in a is to construct the local state of
each processor in a at each time k before time 1, and use P to determine when
processors are required to perform actions. Suppose we have constructed the
state of each processor at time k - 1 in a; let us consider the problem of
constructing the state of a processor p at time k. Processor p's state at (j, k)
consists of p's name, the time k, a list of the messages received by p during
the first k rounds of a, and a list of the input received by p during the first k
rounds of s. Recall that since r is a run of a full-information protocol, the
graph g(r, I) is actually an encoding of the operating environment during
the first I rounds of r, and hence also of s. Given the states of all processors
at time k - 1, the protocol P determines what message each processor is
required to send to p, and g(r,l) determines which of these messages are
actually delivered to p in a. Since P is communication-efficient, each of these
messages is of size polynomial in n and k. Furthermore, the input received
by p during round k labels the node (p, k) of 9(r, 1). Since C is practical, this
input is of constant size. Thus, given each processor's state at time k - 1,
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we can use the graph g(r, 1) and an oracle for P to construct the state of
each processor at time h of s in polynomial time. (An oracle for 1' is an
oracle that, given the state of a processor p at a point (r, 1), in one step
determines what actions P requires p to perform at time 1, and constructs
the messages P requires p to send during round I + 1.)

Consider the following algorithm:

action.performed -- false;
k +- 0;
repeat

for all processors p do
determine whether 7- requires p to perform any action at time k, and
construct the messages P requires p to send during round k + 1;

endfor
if t + 1 processors perform .ctions at time k

then actionperformed., true;
k +- k+ 1;

until k > I or action.performed;
if action..performed

then halt with "yes"
else halt with "no".

From the previous discussion it is clear that given any oracle for P, this
algorithm determines in polynomial time whether t + I processors perform
actions simultaneously no later than time I in a, and hence whether (r, 1)
Vi Cy enabled(ai). 0

As an immediate corollary of Theorem 3.26, we have the following:

Corollary 3.27: Let C be an admissible practical simultaneous choice prob-
lem. If there is a polynomial-time optimal protocol for C, then P=NP.

Corollary 3.27 implies that optimal protocols for simultaneous choice
problems as simple as the distributed firing squad problem or simultane-
ous Byzantine agreement &re computationally infeasible in the generalized
omissions model, assuming P 5 NP. In fact, we do not know whether these
problems can be implemented in polynomial time even using an NP oracle.
The best we can do in the generalized omissions model is implement them
using polynomial-space computations, as in the proof of Theorem 3.7. We
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consider the question of determining the exact complexity of implementing
admissible practical simultaneous choice problems in this model an interest-
ing open problem.

We now proceed to prove Lemma 3.25. First, however, we state a result
that will be very useful in the proof of Lemma 3.25. Roughly speaking, it says
that if a group of processors can (jointly) prove that they are nonfaulty, then
their states become common knowledge at the end of the following round.

Lemma 3.28: Let S be a set of processors and let S = P - S. Let r be
a run of a full-information protocol. If the processors in S implicitly know
at (r, I - 1) that S contains t faulty processors, then the joint view of S at
(r,I - 1) is common knowledge at (r,I).

Proof: L3t V = "V is the joint view of S at time I - 1", where V -

v(S,r,I - 1). Suppose (r',I) 1= V. Given that S has the same joint view
at (r,I - 1) and at (r', t- 1), and since S implicitly knows at (r, t- 1)
that S contains t faulty processors, S implicitly knows the same at (r', I - 1).
In particular, the processors in S must be nonfaulty in r', and each must
successfully send its state to all processors during round I of r'. Since all
nonfaulty processors will receive these messages, we have (r', 1) [ E . It
follows that V D ErW is valid at time t, and the induction rule implies
W Cgrp is valid at time t as well. Thus, (r, 1) = (p implies (r, 1) 1= cQ,. l
(We note in passing that a converse to Lemma 3.28 is also true: If the joint
view at time I - 1 of a set S of processors is common knowledge at time 1,
then the processors in some set S' D S must implicitly know at time I - 1
tbat there are t faulty processors among the members of r.)

In addition to Lemma 3.28, the following result, analogous to Lemma 3.8
in the omissions model, will be of use in the proof of Lemma 3.25.

Lemma 3.29: Let r and r' be runs differing only iAn the (faulty) behavior
displayed by proc2csor p after time k, and suppose no more that f processors
fail in either r or r'. If t - k < t + 1 - f, then (, i) - (r',I).

Proof.- The proof is analogous to the proof of Lemma 3.8, with the added
observation that if p sends no messages after (an arbitrary) time k' in s, then
(a, t) - (a', t) where s' differs from a in that p receives metsages from an
arbitrary set of piocessors during round k'.
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Finally, as previously mentionied, the proof of Lemma 3.25 involves a
reduction from the Vertex Cover problem. This is the problem (see [GJ79])
of determining, given a graph G = (V, E) and a positive integer M, whether G
has a vertex cover of size M or less; that is, a subset V C V such that IV 1 :5 M
and, for each edge {v, w} E E, at least one of v or w belongs to V.

Theorem [Karp]: Vertex Cover is NP-complete.

We now prove Lemma 3.25.
Proof of Lemma 3.25; We will exhibit a Turing reduction from Vertex
Cover to the problem of testing for common knowledge of V,..., Vb, and it
will follow that this problem is NP-hard.

Since every graph G = (V, E) is IVI-coverable, the following is an algo-
rithm for Vertex Cover:

m +- IV;
while G has a vertex cover of size m - 1 do

m--m-1;
ifm<M

then return "G has a vertex cover of size M"
else return "G has no vertex cover of size M".

To implement this test, it is enough to implement a test that, given an m-
coverable graph G, determines whether G is (m - 1)-coverable. Every graph
G = (V, E) clearly has a vertex cover of size IVI- 1. In addition, it is possible
to determine whether G has a vertex cover of size IVI - 2 in polynomial time.
Similarly, it is easy to determine whether G has a vertex cover of size 0 in
polynomial time. We show that if 1 < m :5 IVI - 2 and G is m-coverable,
then it is possible to construct in polynomial time a graph g(r, 1) with the
property that (r, 1) H Vi Cmgi ift G is not (m - 1)-coverable. The point
(r, 1) will be a point of a system IE(n, t) with n > 2t from the class under
consideration (i.e., the class of systems running a full-information protocol
in the generalized omissions model). Thus, given an oracle for testing for
c n~ knole 1 dge of A ,IA. ' w .a 4 -... , 4-4.^,. . 41....&

(m - 1)-coverability of G. It will follow that testing for common knowledge
of (P,..., Wb is NP-hard.
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Figure 3.5: Embedding a graph G in a ran r.

Fix a graph G = (V, E) and an integer m satisfying 1 _5 m < IVI- 2.
Let n = IVi + 7,n + 3 and t = m + 2, and let ,(n, t) be a system from the
class under consideration. Notice that since IVi : in + 2, we have n > 2t.
Since each fact Wi is admissible, for each (pi we can explicitly construct in
polynomial time a labeled communication graph (of a point in E(n, t)) of
minimal length determining p. Of these graphs, lot 9 be one of minimal
length, say of length k. Let r be a run of E(u, t), illustrated in Figure 3.5,
satisfying the following conditions: (i) the input received in the first k rounds
of r is the same as in 9, and no input is received after time k; (ii) all messages
in the first k rounds are delivered; (iii) in round k + 1, the only undelivered
messages are as follows: no message is delivered from processor p. to Pw in
round k + 1 of r iff there is an edge from v to wo in G (that is, the graph G
is represented by the undelivered messages during round k + 1); (iv) two
additional processors fi and f2 are silent from time k + 1 in r, and all other
messages after time k + 1 are delivered; and (v) a set S of t + 1 additional
processors do not fail in r. Since G has a vertex cover V of size m, one failure
pattern consistent with the undelivered messages in r is that p. is faulty for
every v E V (accounting for the undelivered messages during round k+ 1 of r)
and that both f, and f2 are faulty. Given that t = m+2 processors fail in this
failure pattern, there is a run r of E(n, t) satisfying the required conditions.
Since the graph G determining the input of Q(r, k) can be constrcted in
poiynomialtm setting I k-3, " .aph vr, ) can be constr.-ctc. .
polynomial time as well. It remains to show that (r, ) j= Vi Cvpi iff G is
not (m - 1)-coverable.
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Suppose G has no vertex cover of size m - 1, and let F be the set of
processors failing in r. Since fi and f2 must be faulty (each fails to the

t + 1 processors in S), F 4 F - {fl, f2} must account for every undelivered
message during round k + 1. If there is an edge from v to w in G, then
no message from pv to pw is delivered in round k + 1, and one of p, or pw
must be in F'. It follows that F must induce a vertex cover of G. Since G
has no vertex cover of size m - 1, F' must contain at least m processors,
and F at least t = m + 2. Thus, the processors in S implicitly know at time
k + 2 that their complement 3 = P - S contains t faulty processors. By
Lemma 3.28, their states at time k + 2 must be common knowledge at time
k + 3. These states contain a complete description of 9(r, k), and hence the
identity of g(r, k) is common knowledge at (r, 1). Recall that Q was chosen
to be a graph determining Vi for some i. If g does not specify a failure, then
g(r, k) = 9, and it follows that (r,t) 1= Cgpi. On the other hand, if g does
specify a failure, then Vi is determined by the input to the first k rounds
of g and the existence of a failure. Notice that the failure of fi and f2 is also
recorded in the view of S at time k + 2, and hence is also common knowledge
at (r, 1). Thus, both the input to the first k rounds of g and the existence of
a failure are common knowledge at time 1, and it follo, 3 that (r, t) 1 Cmi.
In either case, we have (r, 1) = Vi Cgpj.

Conversely, suppose G does have a vertex cover of size m - 1. Without
loss of generality, at most t - 1 processors fail in r. First, we claim that
(r, 1) - (s,£) where s is a failure-free run with the input of r. Since f, and f2

fail only after time k + 1 = i - 2, two applications of Lemma 3.29 imply
that (r, t) - (r', 1) where r' differs from r in that f, and f2 do not fail in r'.
Since at most t - 3 processors fail in r' and k = I - 3, by Lemma 3.29 we
have (r', t) - (s, ). Second, we claim that for each V there is a run ui
not satisfying Vi that differs from g only after time k - 1. If k = 0, then
since (pi is admissible and hence not valid in the system, such a run must
certainly exist. On the other hand, if k > 0, then since 9 was chosen to be a
labeled communication graph of minimal length determining Vj for some wi,
such a run must exist in this case as well. Now, let u be a run having the
input of ui, in which no processor fails before time 1, and in which processors
become silent after time I iff there is a failure in ui. Since Vi is a fact
about the input and existence of failures, and since ui does not satisfy Wi,
neither does u . Let S and i4 be runs of Y" in the omissions model having the
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operating environments of s and ui, respectively. (Notice that these operating
environments actually are operating environments of the omissions model.)
Notice that no processor fails before time I in either S or t. It follows that

= L!(i ), and that k(s, i) = k(ui,t). We denote these values by
and k, respectively. Since t = m +2 and m > 1, we have that t >_ 3. Thus,
k = I-(t+1) < I-4 = k-1. Recall that S and fiO have the same input (and
no failures) through time k - 1. It 'ollows that V(S, I) = V(I,1). It follows
by Lemma 3.16 that (S,1) ,(O, 1) in the omissions model, and hence that
(s, 1) - (u , 1) in the generalized omissions model as well. Since (r, 1) - (s, 1),
it follows that for each vi we have (r, 1) - (ut, 1) and (ut, 1) V= Wi. Therefore,
for each i we have (r, 1) V CAoi, and hence (r, 1) V= Vi C[. C

We have seen that, as a result of the uncertainty about the failure pattern,
the complexity of determining whether admissible facts are common knowl-
edge is dramatically greater in this model than in more benign models. It is
conceivable, however, that this gap in complexity is due to the fact that faulty
processors may fail both to send and to receive messages, and not merely due
to the uncertainty about the failure pattern. We can show, however, that it
is precisely due to this uncertainty that we observe this complexity gap. Con-
sider the closely related failure model we have termed generalized omissions
with information, a model differing from the generalized omissions model in
that a processor not receiving a message can determine whether it or the
sender is at fault. We can show that the construction used in the omissions
model can also be used in this model to yield a set of states QV(r, 1) completely
characterizing what facts are common knowledge at the point (r, 1).

Proposition 3.30: In generalized omissions with information, we have (r, 1)
C o iff (r',1) [- W for all r' satisfying '(r',1) = '(r,1).

All of the proofs in the omissions model hold when generalized to this model,
with the exception that the construction must be started with a nonfaulty
processor. (In particular, Lemma 3.13 holds only when the processors p and q
are processors that do not fail to receive messages.) This exception says that
faulty processors may not be able to perform all actions performed by the
nonfaulty processors, but this is no surprise since the same is true in the re-
ceii-g onicc;nne model. Furthermore, the computation of the sets Bi in the
construction now depends not only on the undelivered messages, but also on
the additional information that receiving processors obtain regarding blame
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for the undelivered messages. As in the omissions model, this construction
yields a method of deriving efficient tests for common knowledge of certain
facts. Thus, it is again possible to design efficient optimal protocols:

Theorem 3.31: Let C be an implementable practical simultaneous choice.
In generalized omissions with information, there is a polynomial-time optimal
protocol for C.

This shows that it is precisely the uncertainty about the failure pattern that
is responsible for the observed gap in complexity, and not merely the fact that
faulty processors may fail both by failing to send and to receive messages.

The uncertainty about the failure pattern in the generalized omissions
model adds a new combinatorial structure to the similarity graph in this
model that does not exist in other variants of the omissions model. Since
it is possible to assign failure to processors in a number of different ways
consistent with a pattern of undelivered messages, it is possible to play a
solitaire version of a "pebbling game" with the failure pattern when con-
structing paths in the similarity graph, showing that one point is similar to
another point by alternatively assigning responsibility for undelivered mes-
sages to the sender and to the receiver. In fact, in addition to increasing the
difficulty of determining whether a fact is common knowledge at a point, this
new combinatorial structure has interesting effects on when facts become
common knowledge. Recall from the discussion at the end of Section 6.1
that the similarity graph in the omissions model is simply an extension of
the similarity graph in the crash failure model, two points with crash failure
patterns being similar in the crash failure model iff they are in the omissions
model. As a result, our optimal protocol F, in the omissions model is also
an optimal protocol when restricted to runs of the crash failure model. In
the generalized omissions model, however, the similarity graph is not merely
an elaboration of the similarity graph in the omissions model: A connected
component in the similarity graph of the generalized omissions model may
contain several distinct connected components from the omissions model.
As a result, optimal protocols in the generalized omissions model are not
necessa-ily optimal- when restricted to runs of the omissions model, as the
following theorem shows is the case for simultaneous Byzantine agreement.
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Theorem 3.32: No optimal protocol for simultaneous Byzantine agreement
in the generalized omissions model is optimal when restricted to runs of the
omissions model.

Proof: Let 7r be the failure pattern (involving at least 2t processors) in
which processor pi fails to send to processor Pt+i in round 1 (for i = 1, ... , )
and no other failures occur. Notice that r is a failure pattern of both the
omissions model and the generalized omissions model. Let r be a run of a full-
information protocol with the failure pattern z'. We claim that some nonvalid
fact about the initial configuration (in fact, the entire initial configuration)
must be common knowledge at (r, 2) in the omissions model; and that no
nonvalid fact about the initial configuration is common knowledge at (r, 2)
in the generalized omissions model, from which it follows by Corollary 3.3
that no nonvalid fact about the initial configuration is common knowledge
at time 2 in any run with failure pattern 7" of a protocol in the generalized
omissions model. In the first case, any optimal protocol for simultaneous
Byzantine agreement in the omissions model (the protocol .'e, for example)
halts at time 2. In the second case, Lemma 3.1 implies that no protocol for
simultaneous Byzantine agreement in the generalized omissions model can
halt at time 2. Therefore, no optimal protocol for simultaneous Byzantine
agreement in the generalized omissions model is optimal when restricted to
runs of the omissions model.

To see that some nonvalid fact about the initial configuration becomes
common knowledge at (r, 2) in the omissions model, notice that the set ' (r, 2)
is nonempty. The result follows by Corollary 3.18.

To see that no nonvalid fact about the initial configuration becomes com-
mon knowledge at (r, 2) in the generalized omissions model, it is enough to
show that (r, 2) , (S, 2) for all failure-free runs .. Shifting "pebbles," no-
tice that (r, 2) - (r', 2) where r' differs from r only in that processor Pi is
nonfaulty in r' and it is processor pt+i that fails to receive the undelivered
message from pi to pt+l in round 1. Using Lemma 3.29 we can show that
(r', 2) -, (r", 2) where r" differs from r' only in that processor pt+l does not
fail to receive the message from processor pi in round one. Repeating this
procedure we can show that (r", 2) - (u, 2) where u is the failure-free run
with the input of r". It is now possible to use Lemma 3.29 to show that
(a, 2) - (s', 2) for all failure-free runs s and a'. It follows that (r, 2) - (8,2)
for all failure-free runs a, and hence that no nonvelid fact about the initial
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configuration is common knowledge at (r, 2). El

We remark that, for most simultaneous choice problems, the counterexample
given in the proof of Theorem 3.32 can be used to show that no optimal
protocol for this problem in the generalized omissions model is optimal when
restricted to runs of the omissions model.

The results of this section indicate that the generalized omissions model
seems to be a natural failure model that already displays some of the complex
behavior of the more malicious models such as the Byzantine failure models.
By this we mean that, just as a processor in a Byzantine model may be
confused by which of two other processors are actually faulty processors, a
processor in the omissions model hearing of a lost message may be confused
by whether the sender or the receiver of the lost message is at fault. We
believe that this model is therefore a natural candidate for further study as
an intermediate model on the way to understanding the mysteries of fault
tolerance in truly malicious failure models.

3.6 Conclusions

This chapter applies the theory of knowledge in distributed systems to the
design and analysis of fault-tolerant protocols for a large and interesting class
of problems. This is a good example of the power of applying reasoning about
knowledge to obtain general, unifying results and a high-level perspective on
issues in the study of unreliable systems.

Given the effectiveness of a knowledge-based analysis in the case of simul-
taneous actions (see also [DM86]), it would be interesting to know whether
such an analysis can shed similar light on the case of eventually coordinated
actions. Dolev, Reischuk, and Strong [DRS82] show that the problem of
performing eventually coordinated actions in synchronous systems is quite
different from that of performing simultaneous actions. For example, they
show that while t + 1 is a general lower bound on the number of rounds
required to reach simultaneous agreement even when the number f of pro-
cessors actually failing is less that t, eventual agreement can be reached in
as few as f + 2 rounds if the number of processors is sufficiently large. In
addition to common knowledge, an analysis of eventually coordinated actions
may be able to make good use of the notion of eventual common knowledge
(see [HM84, Mos86]). We note that it is possible to show that for eventual
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choice problems there do not, in general, exist protocols that are optimal
in all runs. For example, one can give two protocols for (eventual) Byzan-
tine agreement with the property that for every operating envirbnment one of
these protocols will reach Byzantine agreement (i.e., all processors will decide
on a value) by time 2 at the latest. However, if t > 1, it is well-known that
no single protocol can guarantee that agreement will be reached by time 2
in all runs. What is the best notion of optimality that can be achieved in
eventual coordination?

We provide a method of deriving an optimal protocol for any given im-
plementable specification of a simultaneous choice problem. However, in this
work, we have completely sidestepped the interesting question of character-
izing the problems that are and are not implementable in different failure
models. We believe that a general analysis of the implementability of prob-
lems involving coordinated actions in different failure models will expose
many of the important operational differences between the models. As an
example, our specification of the distributed firing squad problem in the in-
troduction is implementable in the variants of the omissions model, but is
not implementable in more malevolent models, in which a faulty processor
cFn falsely claim to have received a "start" message and otherwise seem to
behave correctly (see [BL871 and [CDDS85] for definitions of versions of the
firing squad problem that are implementable in the more malicious models).

In the generalized omissions model, we have shown how to derive optimal
protocols for nontrivial simultaneous choice problems, requiring processors
to perform polynomial-space computations between consecutive rounds. We
have also shown an NP-hard lower bound for any communication-efficient
protocol for such a problem that is optimal in all runs. Determining the
precise complexity of this task is a nontrivial open problem, due to the inter-
esting combinatorial structure underlying the generalized omissions model.
It would also be interesting to extend our study to more malicious failure
models, such as the Byzantine and the authenticated Byzantine models (see
[Fis83]). It is not immediately clear whether the notion of a failure pattern
can be defined in these models in a protocol-independent fashion. Thus, it
is not clear that the notion of optimality in all runs is well-defined in such
models.7 If such definitions are possible, we believe that the NP.hardness

7Quite recently, Michel [Mic89] has shown in the Byzantine model how to map runs
of one protocol to runs of another protocol in a way that respects processor failures, and
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result from the generalized omissions model should extend to these models.
(Our proof does show that testing for common knowledge in runs of a full-
information protocol F in both models is NP-hard.) Capturing the precise
combinatorial structure of the similarity graph in these models is bound to
expose many of the mysterious properties of the models. We believe that
this is an important first step in understanding these models.

As we have seen, there are no computationally-efficient optimal protocols
for simultaneous choice problems in the generalized omissions model. Since
it is unreasonable to expect polynomial-time processors to perform NP-hard
computations, it is natural to ask what is the earliest time at which simulta-
neous actions can be performed by such processors? Are optimal protocols
for such processors guaranteed to exist? In what sense are these protocols
optimal? How can they be derived? In contrast to the simpler failure mod-
els, the answers to these questions in the generalized omissions model no
longer seems to be as closely related to the information-theoretic definitions
of knowledge and common knowledge given in Chapter 2, since they do not
account for the polynomial-time limitations on processors' computational re-
sources.

A major challenge motivated by these questions, therefore, is the elab-
oration of the theory of knowledge given in Chapter 2 to include notions of
resource-bounded knowledge that would provide us with appropriate tools
for analyzing such questions. Such a theory would provide notions such as
polynomial-time knowledge and polynomial-time common knowledge, which
would correspond to the actions and the simultaneous actions that polynomial-
time processors can perform. Note that the fact that (suboptimal) polynomial-
time protocols for the simultaneous Byzantine agreement problem exist even
in the more malicious failure models implies that, given the right notions,
many relevant facts should become polynomial-time common knowledge.

Recently, in [Mos88], Moses has risen to this challenge and proposed
notions of resource-bounded knowledge based on the existence of tests for
knowledge similar to the tests for common knowledge used here. Loosely
speaking, for example, a processor is said to polynomial-time know a fact
W at a point if it knows (p at this point and there exists a polynomial-time
test that at all points of the system correctly determines whether the proces-
sor knnows jo Ui tis deiniL ion of polynomial-Lime knowledge, ne snows

how to define a notion of optimality with respect to these mappings.
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that polynomial-time common knowledge of certain facts is a necessary con-
dition for processors to perform simultaneous actions, and, using this and
the construction in the proof of Theorem 3.26, he is able to prove that there
can be no polynomial-time protocol for simultaneous Byzantine agreement
in the generalized omissions model that is optimal in all runs with respect to
polynomial-time protocols. We note that other related notions of resource-
bounded knowledge have appeared in [HMT88] and [FZ88]. While each of
these definitions is well-motivated in each of these works, however, under-
standing which of these definitions is in general the "correct" definition is
still an open problem. We will return to this topic again in Chapter 5 where
we study cryptographic protocols in terms of a form of resource-bounded
knowledge.



Chapter 4

Knowledge, Probability, and
Adversaries

In this chapter, we explore the relationship between knowledge and proba-
bility in probabilistic systems.

4.1 Introduction

In a number of areas of research, including distributed computing, artificial
intelligence, and economics, we are faced with the problem of understanding
a system of agents (possibly processors in a distributed network or consumers
in an economic model) that interact in some way. Often, probability plays a
role in this interaction: in the context of game theory, for example, an agent
might toss a coin in order to determine its next move in a game. As we try
to understand these probabilistic systems, we often find ourselves reasoning,
at least informally, about knowledge and probability and their interaction.
Consider, for example, a probabilistic primality-testing algorithm. Such an
algorithm might guarantee that if the input n is a composite number, then
with high probability the algorithm will find a "witness" that can be used to
verify that n is composite. Loosely speaking, we reason, if an agent runs this
algorithm on input n and the algorithm fails to find such a witness, then the

Tiiis chapter is joint work with Joe Halpern. A preliminary version of this work will
appear in Proceedings of the 8th Annual ACM Symposium on Principles of Distributed
Computing, August, 1989.
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agent knows that n is almost certainly prime, since the agent is guaranteed
that the algorithm would almost certainly have found a witness had n been
composite.

A number of recent papers have tried to formalize this sort of reason-
ing about knowledge and probability. Fagin and Halpern [FH88] present an
abstract model for knowledge and probability in which they assign to each
agent and state a probability space to be used when computing the prob-
ability, according to that agent at that state, that a formula W is true. In
their framework, the problem of modeling knowledge and probability reduces
to choosing this assignment of probability spaces. Although they show that
more than one choice may be reasonable, they do not tell us how to make
this choice. One particular (and quite natural) choice is made in [FZ88] and
some arguments are presented for its appropriateness; another is made in
[HMT88] (Chapter 5) and used to analyze interactive proof systems. It is
not initially clear, however, which choice is most appropriate.

In this chapter, we clarify the issues involved in choosing the right assign-
ment of probability spaces. We argue that no single assignment is appropriate
in all contexts. Different assignments can be viewed as most appropriate in
the context of betting against different adversaries. Thinking in terms of
such betting games, a statement such as "I know event E will happen with
probability at least a" is m3aningless until the powers of our opponent in
the betting game have been specified. A strategy that will win a game with
probability .99 against a weak adversary may win the game with probability
only .33 against a strong adversary. Consequently, even if we are told that
a certain strategy will win the game with probability .99 against a certain
adversary, we cannot tell whether it is a good strategy until we know the
powers of this certain adversary.

We find, however, that the notion of an opponent in a betting game
does not fully capture all the subtletiea that arise when modeling knowledge
and probability in distributed systems. We present a framework with three
different types of adversaries, each playing a fundamentally different role.
We briefly describe these roles h'ere, and explore them in greater depth in
the rest of the chapter.

When we analyze probabilistic protocols, we typically do so in terms of
probability distributions on the runs or ezecutions of the protocol. W;Nhen we
say a protocol is correct with probability .99, we mean th:! protocol will do the
right thing in .99 of the runs. A closer analysis of the situation reveals some
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subtleties. In fact, we do not have a probability distribution on the entire
set of runs. In probabilistic algorithms for testing primality such as those
of Rabin [Rab80] and Solovay and Strassen [SS77], for example, we typically
do not assume a distribution on the inputs (the numbers to be tested). The
only source of probability comes from the coins tossed during the execution
of the algorithm. This means that for every fixed input, there is a probability
space on the runs of the protocol on that input, rather than there being one
probability space on the set of all runs. We can view the choice of input
as a nondeterministic choice to which we do not assign a probability. Thus,
we prove the algorithm works correctly with high probability for each initial
nondeterininistic choice. A similar situation arises in probabilistic protocols
that are designed to work in the presence of a nondeterministic (perhaps
adversarial) scheduler (e.g., [Rab82I). Again, we do not wiah. to assume some
probability of playing a given scheduler. Instead, we factor out the choice
of scheduler and prove that the protocol is correct with high probability for
each scheduler.

This, then, is the role played by the first type of adversary: to factor
out the nondeterminism in the system, allowing us to place a well-defined
probability on the set of runs for each fixed adversary. We remark that
this need to factor out the nondeterminism is implicit in most analyses of
probabilistic protocols, and appears explicitly in [Rab82, Var85, FZ88].

The probability on the runs can be viewed as giving us an a priori prob-
ability of an event, before the protocol is run. However, the probability an
agent places on runs will in general change over time, as a function of infor-
mation received by the agent in the course of the execution of the protocol.
New subtleties arise in analyzing this probability.

Consider a situation with three agents P1, P2, and p3. Agent P2 tosses a
fair coin at time 1 and observes the outcome at time 2, but agents pi and ps
never learn the outcome. What is the probability according to Pi that the
coin lands heads? Clearly at time 1 it should be 1/2. What about at time 2?
There is one argument that says the answer should be 1/2. After all, 'agent
P, does not learn any more about the coin as a result having tossed it, so why
should its probability change? Another argument says that after the coin has
been tossed, it does not make sense to say that the probability of heads is 1/2.
The coin has either landed heads or it hasn't, so the probability of the coin
landing heads is either 0 or 1 (although agent P, does not know which). This
point of view appears in a number of papers in the philosophical literature
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(for example, [vF80, Lew80]). Interestingly, the same issue arises in quantum
mechanics, in Schr6dinger's famous cat-in-the-box thought experiment (see
[Pag821 for a discussion).

We claim that these two choices of probability are best explained in terms
of betting games. At time 1, agent p, should certainly be willing to accept
an offer irom either p2 or p3 to bet $1 for a payoff of $2 if the coin lands
heads (assuming p, is risk neutral)., Half the time the coin will land heads
and p, will be $1 ahead, and half the time the coin will land tails and Pi
will lose $1, but on average P, will come out even. On the other hand, agent
I is clearly not willing to accept such an offer from P2 at time 2 (since P2
would presumably offer the bet only when it is sure it will win), although it
is still willing to accept this bet from p3. The point here is that in a betting
game, not only is your knowledge important, but also the knowledge of the
opponent offering the bet. Betting games are not played in isolation!

Thus, the role played by the second type of adversary in our framework is
to model the knowledge of the opponent offering a bet to an agent at a given
point in the run. One obvious choice is to assume you are playing against
someone whose knowledge is identical to your own. This is what decision
theorists implicitly do when talking about an agent's posterior probabilities
[BG541; it is also how we can understand the choice of probability space
made in [FZ88]. By way of contrast, the choice in [HMT88] corresponds to
playing someone who has complete knowledge about the past and knows the
outcome of the coin toss; this corresponds to the viewpoint that says that
when the coin has landed, the probability of heads is either 0 or 1 (although
you may not know which).

A further complication arises when analyzing asynchronous systems. In
this case there is a precise sense in which the agent does not even know exactly
when the event to which it would like to assign a probability is being tested.
Thus we need to consider a third type of adversary in asynchronous systems,
whose role is to choose the time. To illustrate the need for this third type
of adversary, we give an example of an asynchronous system where there are
a number of plausible answers to the question "What is the probability the
most recent coin toss landed heads?". It turns out that the different answers
correspond to different adversaries choosing the times to perform the test

'Informally, an agent is said to be risk neutral if it is willing to accept all bets where
its expectation of winning is nonnegative.
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in different ways. We remark that the v, of asynchronous systems is also
considered in [FZ88]. We can understand the assignment of "confidence"
made there as corresponding to playing against a certain class of adversaries
of this third type.

having shown that different definitions of probabilistic knowledge corre-
spond to different classes of adversaries, we show, given a class of adversaries,
how to construct a definition most appropriate for this class. We formalize
our intuition concerning the probability an agent assigns to an event in terms
of a betting game between the agent and an opponent. We show that our
"most appropriate" definition has the property that it enables an agent to
break even in this game, and any other definition with this property must
correspond to an opponent even more powerful than the actual opponent.
These results form the technical core of this chapter.

The rest of the chapter is organized as follows. In the next section,
Section 4.2, we consider the problem of putting a probability on the runs
of a system; this is where we need the first type of adversary, to factor out
the nondeterministic choices. In Section 4.3 we start to consider the issue
of how probability should change over time. In Section 4.4 we consider th.;
choices that must be made in a general definition of probabilistic kliowledge.
In Section 4.5 we consider particular choices of probability assignments that
seem reasonable in synchronous systems. Here we consider the second type of
adversary, representing the knowledge of the opponent in the bettiuig game.
In Section 4.6, we consider asynchronous systems, where we also have to
consider the third type of adversary. In Section 4.7 we apply our ideas to
analyzing the coordinated attack problem, showing how different notions of
probability correspond to different levels of guarantees in coordinated attack.
The chapter ends with two appendices. In Appendix 4.A we give the proofs
of the results claimed in the chapter, and in Appendix 4.B we discuss -some
interesting secondary observations related to the rest of the chapter.

4.2 Probability on runs

In order to discuss the probability of events in a distributed system, we
must ap~44Fy . p~robblty 14w *I- thi SUco -cso that4 In ordor to

place a reasonable probability distribution on the runs of a system, it is
necessary to postulate the existence of the first type of adversary sketched
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in the introduction.
Consider the simple system cousisting of a single agent who tosses a fair

coin once and halts. This syatem consists of two runs, one in which the
coin comes up heads and c,,,e ..-L which the coin comes up tails. The coin
toss induces a very natural distribution on the two runs: each is assigned
probability 1/2.

Now consider the system (suggested by Moshe Vardi; a variant appears in
[FZ88]) consisting of two agents, P, and P2, where Pi has an input bit and two
coins, one fair coin landing heads with probability 1/2 and vite L.as-d coin
landing heads with probability 2/3. If the input bit is 0, p) I*.se the f6iZ
coin once ad halts. If the input bit is 1, P, tosses the biased . z eoi h s.
This system consists of four runs of the form (b, c), whei:e b is 'h4 Val.in of

the input bit and c is the outcome of the coin toss. What i.; Lb( appropiiat
probability distribution on the runs of this system? For exa, nP., xhatt is the
probability of heads?

Clearly the conditional probability of heads given that the inpuL Lit is 0
should be 1/2, while the conditional probalbility of heads given the input bit
is 1 shouid be 2/3. But what is the unconditional probability of heads? If we
are given a distribution on the inputs, then it is easy to answer this question.
If we assume, for example, that 0 and 1 are equally likely as input values,
then we can compute that the probability of heads is . + 1 . I -1 If we
are not given a distribution on the inputs, then the question has no obvious
answer. It is tempting to assume, therefore, that such a distribution exists.
Often, however, assuming a particular fixed distribution on inputs leads to
results about a system that are simply too weak to be of any use. Knowing
an algorithm produces the correct answer in .99 of its runs when all inputs
are equally likely is of no use when the algorithm is used in the context of a
different disttibution on the inputs.

To overcome this problem, one might be willing to assume the existence
of some fixed but unknown distribution on the inputs. Proving that an
algorithm produces the correct answer in .99 of the runs in the context of an
unknown distribution, however, is no easier than proving that for each fixed
input the algorithm is correct in .99 of the runs, since it is always possible for
the unknown distribution to place all the probability-on the input for which
t.he alaoritlim erforms particularly poorly. Here the advantage of viewing
the system as a single probability space is lost, since this is precisely the
proof technique one would use when no distribution is assumed in the first
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place. Moreover, assuming the existence of some unknown distribution on
the inputs simply moves all problems arising from nondeterminism up one
level. Although we have a distribution on the space of input values, we have
no distribution on the space of probability distributions.

This discussion leads us to conclude that some choices in a distributed
system must be viewed as inherently nondeterministic (or, perhaps better,
nonprobabilistic), and that it is inappropriate, both philosophically and prag-
matically, to model probabilistically what is inherently nondeterministic. But
then how can we reason probabilistically about a system involving both non-
deterministic and probabilistic choices? Our solution-which is essentially
a formalization of the standard approach taken in the literature-is to fac-
tor out initial nondeterministic events, and view the system as a collection of
subsystems, each with its natural probability distribution. In the coin tossing
example above, we would consider two probability spaces, one corresponding
to the input bit being 0 and the other corresponding to the input bit being 1.
The probability of heads is 1/2 in the first space and 2/3 in the second.2

We want to stress that although this example may seem artificial, analo-
gous examples frequently arise in the literature. In a probabilistic primality-
testing algorithm [Rab80, SS77], for example, we do not want to assume

2 Often, even in the presence of nondeterminism, we can impose a meaningful distribu-
tion on the runs of a system without factoring the system into subsystems. However, the
resulting distribution still may not capture all of our intuition. The problem in the preced-
ing example is that probabilistic events (the-coin toss) depend on nonprobabilistic events
(the input bit). Suppose, however, the agent tosses a fair coin regardless of the input
bit's value. Now it is natural to assign probability 1/2 to each of the events {(1, h), (0, h)}
and {(1, t), (0, t)} that the coin lands head and tails, respectively. Consider, however, the
situation (discussed in (FH88, HMT88]) where an agent performs a given action a iff the
input bit is I and the coin landed heads, or the input bit is 0 and the coin landed tails. It
is natural to argue that the probability the agent performs the action a is also 1/2: if the
input bit is I then with probability 1/2 the coin will land heads and a will be performed;
and if the input bit is 0 then with probability 1/2 the coin will land tails and a will be
performed. Unfortunately, our "natural" distribution on the runs of the system does not
support this line of reasoning, since this distribution does not assign a probability to the
set {(1, h), (0, t)} corresponding to the performance of a. In fact, it is not hard to see that
if we could assign this set a probability, then we would be able to assign a probability to
having the input bit set to 0 or 1. But the setting of the input bit was assumed to be
nondeterministic! Again, however, if we factor out this initial nondeterminism, we can
view 1i sys,,te as two stusysteins wih obvious associaicg probabily uistrnuions, and
within each subsystem the action a is performed with probability 1/2. And this is precisely
what the reasoning underlying our intuition is implicitly doing.
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a probability distribution on the inputs. We want to know that for each
choice of input, the algorithm gives the right answer with high probability.
Rabin's primality-testing algorithm [Rab80] is bsed on the existence of a
polynomial-time computable predicate P,,(a) with the following properties:
(1) if n is composite, then at least 3/4 of the a E {1,..., n - 1} cause P,,(a)
to be true, and (2) if n is prime, then no such a causes n to be true. Ra-
bin's algorithm generates a polynomial number of a's at random. If P(a) is
true for any of the a's generated, then the algorithm outputs "composite";
otherwise it outputs "prime". Property (2) guarantees that if the algorithm
outputs "composite", then n is definitely composite. If the algorithm out-
puts "prime", then there is a chance that n is not prime, but property (1)
guarantees that this is very rarely the case: if n is indeed composite, then
with high probability the algorithm outputs "composite". If the algorithm
outputs "prime", therefore, it might seem natural to say that n is prime with
high probability; but, of course, this is not quite right. The input n is either
prime or it is not; it does not make sense to say that it is prime with high
probability. On the other hand, it does make sense to say that the algorithm
gives the correct answer with high probability. The natural way to make this
statement precise is to partition the runs of the algorithm into a collection of
subsystems, one for each possible input, and prove that the algorithm gives
the right answer with high probability in each of these subsystems, where
the probability on the runs in each subsystem is generated by the random
choices for a. While for a fixed composite input n there may be a few runs
where the algorithm incorrectly outputs "prime", in almost all runs it will
give the correct output.

In many contexts of interest, the choice of input is not the only source of
nondeterminism in the system. Later nondeterministic choices may also be
made throughout a run. In asynchronous distributed systems, for example,
it is common to view the choice of the next processor to take a step or the
next message to be delivered as a nondeterministic choice. Similar arguments
to those made above can be used to show that we uaeed to factor out these
nondeterministic choices in order to use the probabilistic choices (coin tosses)
to place a well-defined probability on the set of runs. A common technique
for factoring out these nondeterministic choices is to assume the existence
of a scheduler determinisiically choosing (as a functionof th.e ,tory of the

system up to that point) the next processor to take a step (cf. [Rab82,
Var85]). It is standard practice to fix some class of schedulers, perhaps the
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.5 .5

Figure 4.1: A (labeled) computation tree.

class of "fair" schedulers or "polynomial-time" schedulers, and argue that for
every scheduler in this class the system satisfies some condition.

As we now show, if we view all nondeterministic choices as under the
control of some adversary from some class of adversaries, then there is a
straightforward way to view the set of runs of a system as a collection of
probability spaces, one for each adversary. By fixing an adversary we fac-
tor out the nondeterministic choices and are left with a purely probabilistic
system, with the obvious distribution on the runs determined by the proba-
bilistic choices made during the runs. This is essentially the approach taken
in [FZ88].

Once we fix an adversary A, we can view the runs of the system with this
adversary as a (labeled) computation tree TA (see Figure 4.1). Nodes of the
tree are global states and paths in the tree are runs. Now, however, edges
of the tree are labeled with positive real numbers such that for every node
the values labeling the node's outgoing edges sum to 1. Intuitively, the value
labeling an outgoing edge of node s represents the probability the system
makes the corresponding transition from node a. Given a finite path in the

3Since all edges have positive labels, we are effectively ignoring tran,:tions with proba-
bility 9, and assuming that there is a discrete probability distribution on the set of pdssible
transitions at each node. It follows that each node can have at most a countable number
of outgoing edges. This means, for example, that we are disalloing the possibility that
the next step will be a random assignment to a variable z chosen with uniform probability
from the interval [0, 1]. We could easily extend our model to deal .vith this situation by
assigning probabilities to sets of transitions, rather than just individual transitions. We
have chosen to consider only discrete probability distributionp here for ease of exposition.
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tree, the probability of the set of runs extending this finite path is simply
the product of the probabilities labeling the edges in this finite path.

It is natural to view this computation. tree TA as a probability space, a
tuple (UZA, XA, PA) where RA is the set of runs in TA, XA consists of subsets
of RA that are measurable (that is, the ones to which a probability can be
assigned; these are generated by starting with sets of runs with a common
finite prefix and closing under countable union and complementation), and
a probability function PA defined on sets in XA so that the probability of a
set of runs with a common prefix is the product of the probabilities labeling
the edges of the prefix. If we restrict attention to finite runs (as is done
in [FZ88]), then it is easy to see that each individual run is measurable, so
that XA consists of all possible subsets of ZA.. Moreover, in the case of finite
runs, the probability of a run is just the product of the transition probabilities
along the edges of the run.

It is occasionally useful to view this computation tree TA as consisting of
two components: the tree structure (that is, the unlabeled graph itself), and
the assignment of transition probabilities to the edges of the tree. Given an
unlabeled tree TA, we define a transition probability assignment for TA to be
a mapping r assigning transition probabilities to the edges of TA. We will
use the notation TA at times to refer to the unlabeled tree, to the labeled
tree, and to the induced probability space; which is meant should be clear
from context.

We define a probabilistic system to consist of a collection of labeled com-
putation trees (which we view as separate probability spaces), one for each
adversary A in some set .A. We assume that the environment component in
each global state in TA encodes the adversary A and the entire past history
of the run. This technical assumption ensures that different nodes in the
same computation tree have different global states, and that we cannot have
the same global state in two different computation trees. Given a point c, we
denote the computation tree containing c by T(c). Our technical assumption
guarantees that T(c) is well-defined.

The choice of the appropriate set A of adversaries against which the sys-
tem runs is typically made by the system designer when specifying correct-
ness conditions for the system. An adversary might be limited to choosing
the initil inp.t' of the a-gents (in which c.se the set of possible adversaries
would correspond to the set of possible inputs) as is the case in the context
of primality-testing algorithms in which an agent receives a single number
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(the number to be tested) as input. On the other hand, an adversary may
also determine the order in which agents are allowed to take steps, the order
in which messages arrive, or the order in which processors fail. One might
also wish to restrict the computational power of the adversary to polynomial
time. It depends on the application.

4.3 Probability at a point

We are interested in understanding knowledge and probability in distributed
systems. An agent's knowledge varies over time, as its state changes. We
would expect the probability an agent assigns to an event to vary over time
as well. Clearly an agent's probability distribution at a given point must
somehow be related to the distribution on runs if it is to be at all meaningful.
Nevertheless, the two distributions (the overall distribution on the runs of a
system and the distribution on the runs an agent uses at a point) are quite
different; depending on which of the distributions we use, we can be led to
quite different analyses of a protocol.

To understand this distinction, consider the Coordinated Attack prob-
lem [Gra78]. Two generals A and B must decide whether to attack a common
enemy, but we require that any attack be a coordinated attack; that is, A
attacks iff B attacks. Unfortunately, they can communicate only by messen-
gers who may be captured by the enemy. It is known that it is impossible for
the generals to coordinate an attack under such conditions [Gra78, HM84].
Suppose, however, we relax this condition and require only that the generals
coordinate their attack with high probability [FH88, FZ88]. To eliminate
all nondeterminism, let us assume general A tosses a fair coin to determine
whether to attack, and let us assume the probability a messenger is lost to
the enemy is 1/2. Our new correctness condition is that the condition "A
attacks iff B attacks" holds with probability .99.

Consider the following two- ,tep solution CA,1 to the problem. At round
0, A tosses a coin and sends 10 messengers to B iff the coin landed heads. At
round 1, B sends a messenger to tell A whether it has learned the outcome
of the coin toss. At round 2, A attacks iff the coin landed heads (regardless
of what it hears from B) and B attacks iff at round 1 it learned that the coin
landed heads. It is not hard to see that if we put the natural probability
space on the set of runs, then with probability at least .99 (taken over the
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runs) A attacks iff B attacks: if the coin lands tails then neither attacks,
and if the coin lands heads then with probability at least .99 at least one of
the ten messengers sent from A to B at round 0 avoids capture and both
generals attack.

This is very different, however, from saying that at all times both geneals
know that with probability at least .99 the attack will be coordinated. To
see this, consider the state just before attacking in which A has decided to
attack but has received a message from B saying that B has not learned
the outcome of the coin toss. At this point, A is certain the attack will not
be coordinated. Although we have not yet given a formal definition of how
to compute an agent's probability at a given point, it seems unreasonable
for an agent to believe with high probability that an event will occur when
information available to the agent guarantees it will not occur.

On the other hand, consider the solution CA2 differing from the preced-
ing one only in that B does not try to send a messenger to A at round 1
informing A about whether B has learned the outcome of the coin toss. An
easy argument shows that in this protocol, at all times both generals have
confidence (in some sense of the word) at least .99 that the attack will be co-
ordinated. Consider B, for example, after having failed to receive a message
from A. B reasons that either A's coin landed tails and neither general will
attack, which would happen with probability 1/2, or A's coin landed heads
and all messengers were lost, which would happen with probability 1/211;
and hence the conditional probability that the attack will be coordinated
given that B received no messages from A is at least .99.

As the preceding discussion shows, in a protocol which has a certain
property P with high probability taken over the runs, an agent may still
find itself in a state where it knows perfectly well that P does not (and will
not) hold. While correctness conditions P for problems arising in computer
science have typically been stated in terms of a probability distribution on
the runs, it might be of interest to consider protocols where an agent knows
P with high probability at all points. As we shall show, the probability
distribution on the runs typically corresponds to each agent's probability
distribution at time 0. Thus, we can view the probability on the runs as an
a priori probability distribution. To require a fact (or a condition P) to hold
with high probability from each agent's point of view at all times is typically
a much stronger requirement than requiring it to hold with high probability
over the set of runs. Arguably, in many cases, it is also a more natural
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requirement. It seems quite natural, for example, to require of a coordinated
attack protocol that A have high confidence at all points that the attack will
be coordinated, rather than allowing A to attack even when it is certain the
attack will be unccordinated.

4.4 Definitions of probabilistic knowledge

We want to make sense of statements such as "at the point c, agent pi knows
W holds with probability a". The problem is that, although we typically have
a well-defined probability distribution on the set of runs in each computa-
tion tree, in order to make sense of such sti. 'ements we need a probability
distribution on the points pi considers possib e at c. The reason we need a
distribution on points and not just on runs is -&hat many interesting facts are
facts about points and not about runs. Consider, for example, the fact "the
most recent coin tossed landed heads". If a coin is tossed many times in a
single run, this fact may be true at some points of the run and false at others,
and hence is a fact about points and not about runs. When reasoning about
probabilistic protocols, it seems quite natural to want to make formal state-
ments of the form "agent p knows with probability 1/2 that the most recent
coin tossed by agent q landed heads". It is possible to reformulate this state-
ment so that it becomes a fact about runs. The fact "the kth coin tossed by
agent q landed heads" is a fact about runs; and the statement above can be
reformulated as "for all times k, if the current time is k, then agent p knows
with probability 1/2 that the kth coin tossed by agent q landed heads". In
our opinion, the former statement more naturally corresponds to the way we
think about such protocols. If we are willing to restrict our attention to facts
about the run, then we can make do simply with a distribution on runs, but
this precludes (or at least complicates) the discussion of many interesting
events in a system.

We begin by reviewing the general framework of [FH88] in which, given
a particular assignment of probability spaces to points and agents, we can
make sense of such statements about an agent's probabilistic knowledge.
The remainder of the chapter will focus on the construction of appropriate
p robability assignments.

Define a probability assignment 1' to be a mapping from an agent pi and
point c to a probability space Pi,c = (St ',o i,). Here Si,c is a set of
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points, Xi,, is the set of measurable subsets of Si,,, and pj, is a probability
function assigning a probability to the sets in Xy. 4 In most cases of interest,
one can think of Si,, as a subset of the points agent i considers possible
at c, and of ui,c as indicating the relative likelihood according to pi that a
particular point in Si,, is actually the current point c.1

Given such an assignment, let Si,c('p) be the set of the points in Si,c
satisfying Vp; that is, S,c('p) = {d E Sj,, : d I= 'p}. It is natuial to interpret

jc(Si,.(wo)) as the probability Vp is true, according to agent pi at the point
c. One problem with this interpretation, of course, is that the set Si, ('p) is
not guaranteed to be measurable, and hence li,.(Sic(W)) is not guaranteed to
be well-defined. In order to deal with this problem, we follow the approach
of [FH88], and make use of inner and outer measures. Given a probability
space (S, X, ,), the inner measure it. and outer measure IL* are defined by

. (S') = sup {(T): T C S' and T E X}
A*(S') = inf {(T) : T D S' and T E X}

for all subsets S' of S. Roughly speaking, the inner (resp. outer) measure
of Si,c(p) is the best lower (resp. upper) bound on the probability W is true,
according to pi at c. It is easy to see that p*(T) = 1 -- u.(Tc) for any set
T, where Tc is the complement of T. Given a probability assignment 7', we
write 7, c = Pri(W) _> a to mesan A ,c.(S ~e(p)) >_ a.6 Note that we need
the probability assignment P to make sense of Pri. We take Ki"W to be an
abbreviation for Ki(Pri(w) >_ a); thus Ki*v means that agent pi knows that
the probability of W is at least a since Pri('o) > a holds at all points pi
considers possible.

We now have all the definitions needed to give semantics to a logical
language of knowledge and probability. In particular, the language of most

4We often follow the standard practice [Ha150, p. 73] of identifying the probability space
7Pi,c with the sample space Si,c; the intention should be clear from context.

5Returning to the question of distributions on runs versus points, notice that as long
as the set Si,c does not contain more than one point per run, there is a natural bijection
from the probability on the points in Si,c to the probability on the runs going through Si,c.
In general, however, we allow more than one point on the same run to appear in Si,c. As
we shall see in the next section, this generality is useful when dealing with asynchronous

6We remark that we can easily extend these definitions to more complicated formulas

such as Pri(w) > 2Pr(P); see [FH88].
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interest to us in the remainder of this chapter is the language £(P) obtained
by fixing a set ' of primitive ptopositions and closing under the standard
boolean connectives (conjunction and negation), the knowledge operators Ki,
probability formulas of the form Pri(So) a, and the standard (linear time)
temporal logic operators next 0 and until U. Note that £() is sufficiently
powerful to express the operators K* and the temporal operators henceforth
0 and eventually 0. 7 In the context of a given system, we say that C(1)
is state-generated if each of the primitive propositions in "I is a fact about
the global state; and we say that £(P) is sufficiently rich if for every global
state g there is a primitive proposition in 41 true at precisely those points
with global state g. This condition ensures that the language C(1) is rich
enough to allow us to talk about individual global states. The assumption
that £(,) is state-generated is quite reasonable in practice: we typically take
the primitive propositions to represent facts such as "the coin landed heads",
"the message was received", or "the value of variable z is 0". Each of these
facts is a fact about the global state, assuming certain aspects of the history
are recorded in the global state. Sufficient richness is a technical condition
required for a few of our results. We can always make a language sufficiently
rich by adding primitive propositions.

We now have a natural way of making sense of knowledge and probability,
given a probability assignment 1'. Unfortunately, we still do not know how
to choose P, but our choices are somewhat more constrained than they may
at first appear. We are given the computation trees and the associated
distributions on runs, and we clearly want the distribution on the sample
space Si,, of points we associate with agent pi at point c to be related somehow
to these distributions on runs. We next show that once we choose the sample
spaces Si,,, there is a straightforward way to use the distribution on runs to
induce a distribution on Si,r. Thus, once we are given an appropriate choice of
sample spaces and the distributions on runs of the computation trees, we can
construct the probability assignment. The problem of choosing a probability

7We define (r, k) 1- O9 iff (r, k+ 1) k w, so OW is true at time k in a run iffit is true
at time k + 1, after the next step. We define (r, k) k (p U 0 to mean there exists I> k
such that (r, t) 1 ip and (r, ') 1= (p for all t' withk < ' < 1. Thus ' pU 0 is true at (r, k) if
ip is true at some point in the future, and 'p is true until then. Recall that 0(p, which says
that (p is true at some point in the future, can be taken as an abbreviation of true U p;
and that O'p, which says that p is true now and forever in the future, is an abbreviation
for -10-1(p.
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assignment, therefore, essentially reduces to choosing the sample spaces. This
reduction will clarify important issues in determining the appropriate choice
of probability assignments.

The idea of our construction is quite straightforward: given a sample
space Si,, and a subset S C Si,,, the probability of S (relative to Si,) is just
the probability of the runs going through S normalized by the probability
of the set of runs going through Si,r. In other words, the probability of S is
the conditional probability a run passes through S, given that the run passes
through Si,r.

In order for this simple idea to work, however, the set Si,, must satisfy
a few requirements. One natural choice for Si,, is the set Ki(c) of all points
agent pi considers possible at c. In general, however, this set contains points
from many different computation trees, and attempting to impose a distri-
bution on this set of points leads to the same difficulties that led us to factor
out nondeterminism and view a system as a collection of computation trees
in the first place. Recall the example from Section 3 in which P, tosses a fair
or biased coin, depending on whether its input is 0 or 1. Before (and after)
the coin is tossed, P2 considers four worlds possible, one from each possible
run. We can no more place a probability on these points than we could place
a probability on the four runs. On the other hand, given a point c from a
run with input bit 1 (corresponding to the biased coin), if we restrict S2,c
to consist of the two points in the computation tree with input 1, then we
can put a probability on the two points in the obvious way and compute the
probability of heads as 2/3. This intuition leads us to require that each set
Si,, be contained entirely within a single computation tree:

REQ1. All points of Si,, are in T(c).

We remark that, while REQ1 does not allow us to take Sic to be all of
KX(c), it still seems natural to choose S,. _ Ki(c). We say that a probability
assignment is consistent if it satisfies this condition. As pointed out in [FH88],
a consequence of this is that if pi knows V, then V holds with probability 1;
that is, Ki(V) = (Pr(W) = 1).8 With a consistent assignment, it cannot
be the case that agent pi both knows (p and at the same time assigns -(p
positive probability.

sIn fact, as pointed out in [FH88], this axiom characterizes the property that the
probability space used by Pi is a subset of the points that pi considers possible.
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The single condition REQ1, however, is not enough for our idea for impos-
ing a distribution on the set Si,, of points to work. Because this idea involves
conditioning on the set of runs passing through Si,c, the definition of condi-
tional probability forces us to require that that this set of runs is a measurable
set with positive measure. Suppose T(c) = (lZA, XA, #A), for some adversary
A. Given a set S of points contained in T(c), denote by 1?(S) the set of
runs passing through S; that is, IZ(S) = {r E IZA ' (r, k) E S for some k}.
We require that

REQ2 : 1Z(Si,) E XA and IA(1?(Si,1)) > 0.

REQ2 is a relatively weak requirement. The following lemma shows that,
in practice, REQ2 is typically satisfied. A set S of points is said to be state-
generated if (r, k) E S and r(k) = r'(k') imply (r,, k') E S; in other words, S
contains all points with the same global state as (r, k).

Proposition 4.1: If Sic is state-generated and satisfies REQ1, then Si,.
satisfies REQ2.

The proof of Proposition 4.1 (and all other technical results in this chap-
ter) can be found in Appendix 4.A. We remark that this statement is actually
independent of the transition probability assignment r axsigwng probabili-
ties to the edges of 7. 'While REQ2 seems to depend on both Si., and r,
Proposition 4.1 tells us we can choose Si,, without regard for r and be confi-
dc.it REQ2 will be satisfied for whatever r we eventually choose, as long as
Si,, is state-generated.

Given a set of points Si,, satisfying REQ1 and REQ2, we now make
precise our idea for imposing a distribution on -Si,. Intuitively, to construct
the collection Xi,e of measurable subsets of Si,,, we project the measuxble
subsets of the runs of T(c) onto Si,,. Formally, given a ret RV of funs and a
set S of points, we define Proj(' , S) = {(r, k) E S :i E ?'}. We define

Xjo = {Proj(1', ,.) : R' E XA}.

Finally, we define the probability function pi,, on the measurable subsets of
Si,, via conditional probability:

,i,o:(Sl = 1L((S) ! I(S,,.)) = LA(1Z(S))

. .. .. a('fl(s,,))
for all S E X Let P,,, (S ,0, Xj,,, jii).
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Proposition 4.2: If Si,, satisfies REQ1 and REQ2, then P,, is a probability
space.

We can now formalize our intuition that the construction of probability
assignments reduces to the choice of sample spaces. Given a system (i.e. a
collection of labeled computation trees), define a sample space assignment
to be a function S that assigns to each agent pi and point c a sample space
S(i, c) = Sjc satisfying REQ1 and REQ2. Given a sample space assignment
S, our construction shows how to obtain a probability space Pi,c for all agents
pi and all points c. This naturally determines a probability assignment -,
which we call the the probability assignment induced by S. We note that the
definition of ? actually depends on both the sample space assignment S and
the transition probability assignment -r (implicitly determined by the fact
that we have labeled computation trees). There are times when it is conve-
nient to start with an unlabeled computation tree, labeled by some transition
probability assignment r. In this case, we refer to 'P as the probability as-
signment induced by S and r. For future reference, we define a.fact W to be
measurable with respect to S if Si,(W) E Xi, for all agents pi and points c.

The preceding discussion makes precise the idea that choosing a proba-
bility assignment reduces to choosing a sample space assignment, but still
does not help us choose the sample space assignment. Different choices re-
sult in probability assignments with quite different properties. Let us return
to the example in the introduction, where P, tosses a fair coin, and neither
P2 nor P3 observe the outcome. Clearly, at time 2 (after the coin has been
tossed), P2 considers two points possible: say h (the coin landed heads) and
t (the coin landed tails). Consider the sample space assignment 8 1 such that
S1(2, h) = S1(2, t) = {h, t}. Thus, at both of the points h and t, the same
sample space is being used. In this case, at both points, the probability of
heads is 1/2. Thus, with respect to the induced probability assignment, P2
knows that the probability of heads is 1/2. On the other hand, consider
assignment S2 such that 82(2, h) = {h} and S2(2, t) = {t}. With respect to
the induced probability assignment, the probability of heads at h according
to P2 is 1, while the probability of heads at t is 0. In this case, all that P2
can say is that it knows that the probability of heads is either 1 or 0, but
it doesn't know which. Which is the right probability assignment? As we
hinted in the introduction, the answer depends on another type of adversary,
the one that P2 views itself as playing against. This is the focal point of the
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next section.
We conclude this section with one further ex. -nple. Consider a system

where a fair die is tossed by pi and p2 does not kn - the outcome. Suppose
that at time 2 the die has already been tossed. Let cl, ... cs be the iix
points corresponding to the possible outcomes of the die. What sample
space assignment should we use for p2? One obvious choice is to take the
assignment S1 which assigns the same sample space at all six pcints, the
space consisting of all the points. With respect to this sample space, each
point will have probability 1/6. Let V be the statement "the die landed on an
even number". Clearly, in the probability space induced by this sample space,
V holds with probability 1/2. Since P2 uses the same sample space at all six
points, agent P2 knows that the probability of o is 1/2. A second possibility
is to consider two sample spaces S6 = {c1, c2, c3} and S 2 = {c4, cs, ca}; let the
assignment S 2 assign the sample space S, to agent P2 at all the points in S,
and the sample space S2 at all the points in S2. Thus, at all the points in
S,, the probability of V is 1/3, while at all the points in 5 2 , the probability
of jp is 2/3. All P2 can say is that it knows that the probability of (o is either
1/3 or 2/3, but it does not know which.

Clearly we can subdivide the six points into even smaller subspaces. It
is not too hard to show that the more we subdivide, the less precise is P2's
knowledge of the probability. (We prove a formal version of this statement
in the next section.) But why bother subdividing? Why not stick to the
first sample space assignment, which gives the most precise (and seemingly
natural) answer? Our reply is that, again, this may not be the appropriate
answer when playing against certain adversaries.

4.5 Probability in synchronous systems

We first consider the problem of selecting appropriate probability assign-
ments in completely synchronous systems. Intuitively, a system is syn-
chronous if all agents effectively have access to a global clock. Recall from
Chapter 2 that a system is synchronous [HV89] if for all points (r, k) and
(r', k') and all agents pi, if ri(k) = r (k') then k = Y. Again, this means that
no t.Wo pniitana getn p considers inditing-_ishable ,an lie on he same run.

When considering probability, it turns out that many things become much
easier in the context of synchronous systems. For example, it turns out
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that, in practice, sample space assignments satisfy three natural properties:
(a) they are state-generated; (b) they are inclusive, which means c E Si,,
for all agents pi and points c; and (c) they are uniform, which means that
d E Sir implies Sj,d = Si,c for all agents pi and points c and d.9 We say that
S (and its induced probability assignment) is standard if it satisfies these
three properties. For the remainder of this section we consider only standard
assignments.

One convenient feature of synchronous systems is that all facts of interest
are measurable. Recall that £(1) is state-generated with respect to a system
7Z if all the primitive propositions in 4 are facts about the global state.

Proposition 4.3: In a synchronous system, if S is a consistent standard
assignment and £(f) is state-generated, then W is measurable with respect
to S for all facts jp E C(4).

This result says that for all practical purposes we do not have to concern
ourselves with nonmeasurable sets and inner measures in synchronous sys-
tems. The proof is by induction on the structure of W, and can be found in
Appendix 4.A.

We begin our examination of probability assignments in synchronous sys-
tems by defining four sample space assignments and their induced probability
assignments. Each of these assignments can be understood in terms of a bet-
ting game against an appropriate opponent. (This is the second type of
adversary mentioned in the introduction.) We make this intuition precise
after we have defined the probability assignments.

The first of these assignments corresponds to what decision theorists
would call an agent's posterior probability. This is essentially the proba-
bility an agent would assign to an event given everything the agent knows.
This intuitively corresponds to the bet an agent would be willing to accept
from a copy of itself, someone with precisely the same knowledge that it has.
We make this relationship between probability and betting precise shortly.

What probability space corresponds to an agent's conditioning on its
knowledge in this way? Since we have identified an agent pi's knowledge with
the set of points pi considers possible at c, this set of points seems the most

OCondition (c) is essentially the definiiio o a unifor tz probabUlT y as_, ignment f._,m,
[FH88]. A probability assignment induced by a uniform sample space assignment as we
have defined it here is a uniform probability assignment in the sense of [FH88].
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natural choice for the space. As we have seen, however, this set of points is
not in general contained in one computation tree. Thus, we consider instead
the set of points in c's computation tree T(c) that pi considers possible at
c. This is just the set Treei,c = Id E T(c) : c 'i d}. It is clear that Treei,,
satisfies REQ1; that it satisfies REQ2 follows by Proposition 4.1 since it is
state-generated. By Proposition 4.2, therefore, the induced probability space
( Treei,c, Xi1,, Ai,c) is indeed a probability space. Let S-"*° be the sample space
assignment that assigns the space Treei,, to agent pi at the point c, and let
1" °" be the probability assignment induced by 8?°t.

The probability space Pt,'" has a natural interpretation. It is generated
by conditioning on everything pi knows at the point c and the fact that it is
playing against the adversary A that generated the tree TA in which c lies. Of
course, the agent considers many adversaries possible. Thus, the statement
?post, c j= Kio means that for all adversaries pi considers possible at c (given
its information at c), the probability of (o given all pi knows is at least a.
'P
to° is precisely the assignment advocated in [FZ88] in the synchronous case.

Suppose now that pi were considering accepting a bet from someone (not
necessarily an agent in the system) with complete knowledge of the past
history of the system. In this case, we claim that the appropriate choice of
probability space for pi at the point c = (r, k) is all the other points (r', k)
that have the same prefix as (r, k) up to time k; in other words, all points
with the global state r(k). Call this set of points Prefi,c. Note that Prefi,c
is independent of pi, and depends only on the point c. Moreover, Prefi,,
is clearly state-generated (by r(k) itself), so by Propositions 4.1 and 4.2.
we can again induce a natural probability distribution on this set of points
by conditioning on the runs passing through Prefi,c. Let 8 t" denote the
sample space assignment that assigns Prefi,, to pi at c, and let P" denote
the probability assignment induced by Sf"u. We remark that this is the
probability assignment used in [HMT88], as well as [LS82].

In the probability space Pia', any event that has already happened by
the point c will have probability 1. Future events (that get decided further
down the computation tree) still have nontrivial probabilities, which is why
we have termed it a future probability assignment.

Let us reconsider yet again the coin tossing example from the introduc-
tion, where agent .2 tosses a fair coin at time 1 but agents p, and p, do not
learn the outcome. Since the coin has already landed at time 2, it is easy to
check that we have PIt", c = K1(Pr1 (heads) = 1 V Pri(heads) = 0). On the
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other hand, we have ?'", c H Ki(Prl(heads) = 1/2). Thus, ?' ° and P'""
correspond to the two natural answers we considered for the probability of
heads. They capture the intuition that the answer depends on the knowledge
of the opponent P, is betting against: ?,I' corresponds to betting against P2,
ad ?'Po" corresponds to betting against p3 .

Notice that in both the cases of ?' °" and P"/S
t, the probability space

associated with an agent at a point corresponds to the set of points the
agent and its opponent both consider possible. Suppose, in general, that
pi is considering what an appropriate bet to accept from pi would be. We
claim (and show below) that in this case the probability assignment should
be generated by the joint knowledge of agents pi and pj, as represented by
the intersection of the points they both consider possible; that is, by the
set Treei, = Tree,c fl Tree,. (Note that Treei, = , so that this

construction can be viewed as a generalization of the previous one.) Again it
is easy to see that Treei,C is state-generated, so by Propositions 4.1 and 4.2 we
can induce the natural distribution on this set of points by conditioning on
the runs passing through Treei C. Let Si be the sample space assignment that
assigns Treei,c to pi at c, and let ?' be the probability assignment induced
by Si .

All the examples we have seen up to now-S *", S'ut , S i , and ,qwi*-
have had the property that Sji,c _ Ki(c), which means they are consistent.
As mentioned in Section 4.4, such assignments are characterized by the in-
tuitively desirable condition Ki( o) = (Pri(Wo) = 1); when we return to the
coordinated attack problem in Section 4.7, we will see an example of an
inconsistent assignment which causes an agent to know the attack will be
coordinated with high probability, while knowing that the attack will not
be coordinated(!). While consistency seems a natural restriction on prob-
ability assignments, it is not a requirement of our framework. There may
be be technical reasons for considering inconsistent assignments. One obvi-
ous (although inconsistent) probability assignment associates with the point
(r, k) the set of all time k points in its computation tree. Call this set Alli,.
(Alli,c is in fact independent of pi.) The probability space induced by the
construction of Proposition 4.2 in this case simulates the probability on the
runs. Let us denote the associated sample space and probability assignments
by ,Spri a nd P?' i. Notice that if p. uses the probability space P? , it is
essentially ignoring all that it has learned up to the point c, which is why we
have termed it a prior probability.
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All four of the sample space assignments we have constructed are standard
assignments. It is not difficult to see, in fact, that any assignment constructed
on the basis of some opponent's knowledge will be standard. This lends some
justification to our restriction to standard assignments. We can view these
four assignments as points in a lattice of all possible standard sample space
assignments. We define an ordering _< on this lattice by S' < S iff S ,C C Si,
for every agent pi and point c. An important property of this ordering is the
following:

Proposition 4.4: If S and S' are standard assignments satisfying S' < S,
then for every agent pi and point c, the set Sir can be partitioned into sets
of the form Sid with d E Sic.

Intuitively, this means that the sets Si,, are refinements of the sets Si, , since
the sets S,, are obtained by carving the sets Si,r into pieces. Consider ,SPa°

and S* 'i, for example. Every set Treei,r of S'°°l can be partitioned into the
sets Treeid of Sft ' with d E Treei,,. In fact, it is clear that

SJ-' < si < 8,o.. < SJ,- ' .

Furthermore, notice that SPV° is greatest (with respect to <) among all
consistent sample space assignments.

In the case of consistent assignments, if we interpret Si,, as the intersection
of pi's knowledge with its opponent's knowledge, we can think of S' < S
as roughly meaning that the opponent corresponding to S' considers fewer
points possible and hence knows more than the opponent corresponding to S.
This means, for example, that SPO°° , as the maximal consistent assignment,
corresponds to playing against the least powerful opponent.

The ordering on sample spaces assignments induces an obvious ordering
on probability assignments: given two sample space assignments S' and S
and their induced probability assignments P' and P, respectively, we define
P' < P iff S' < S. An important point to note is that if P ' and 1' are
consistent assignments satisfying ' < P', then 1&,, can be obtained from pi,
by conditioning with respect to S.'x:

Proposition 4.5: In a synchronous system, if ' and P are consistent stan-
dard assignments satisfying P' < P, then for all agents pi, aJl points c, and
all measurable subsets S' E X:'C
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(a) S' E X'j (so that, in particular, Si,, itself is a measurable subset of

(b) i,(i,)> 0,

(c) 1o(S') ==

It follows that any consistent probability assignment can be obtained from

PPO" by conditioning.

We are now able to make precise the sense in which P"O", P)J, and "'PI' are
the "right" probability assignments for an agent to use when playing against
an opponent who knows exactly as much as it does, when playing against pi,
and when playing against an opponent who has complete information about
the past. We focus on 7 here, but the arguments are the same in all cases.

Consider the following betting game between agents pi and pj at a point
c. Agent pj offers pi a payoff of 8 for a bet on Wp. Agent pi either accepts or
rejects the bet. If pi accepts the bet, pi pays one dollar to pj in order to play
the game, and p, pays / dollars to pi if ' is true at c. Thus, if pi accepts
this bet at the point c, then pi's net gain is either 3 - I or -1 depending on
whether 'p is true or false at c; if pi rejects the bet, we say its gain is 0.

Intuitively, assuming that p is risk neutral, pi can always be convinced
to accept a bet on 'p no matter how low the probability of 'p is, as long
as pi believes there is some nontrivial chance 'p is true and the payoff /3 is
high enough. Our intuition says there must be some relationship between
the probability a with which pi knows ' and this acceptable payoff / that
would induce pi to accept a bet on 'p. If a is close to 0 then pi might require
a high payoff to make the bet's risk acceptable, while if a is close to 1 then
pi might be willing to accept a much lower payoff since the chance of losing
is so remote. Our claim that Pi is the right probability assignment is based
on the fact that Pi determines for an agent pi the lowest acceptable payoff
for a bet with pj on a fact 'p. In other words, 7i determines precisely how
an agent pi should bet when betting against pj. In fact, 7i is in a sense the
unique such probability assignment. We now make this intuition precise.

What should pi consider an acceptable payoff for a bet on (p, assuming
.does nA, want to lose money on the bet? Since p; is presumably following

some strategy for offering bets to pi, the acceptable payoff should take this
strategy into account. Consider, for example, the system in which pi secretly
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tosses a fair coin at time 0, and offers at time 1 to bet pi that the coin
landed heads. If pj is following the strategy of always offering a payoff of $2,
independent of the outcome of the coin toss, then pi can always safely accept
the bet since, on average, it will not lose any money (that is, pi's expected
profit is - ro). If pi offers a payoff of $2 only when the coin lands tails, then
pi is cerLdin to lose money. On the other hand, if pj offers a payoff of $2 only
when the coin lands heads, then it is pi who is certain to lose money. While
we expect that pj will not follow a strategy that will cause it to lose money,
we assume only that p1 's strategy for offering bets depends only on its local
state. In other words, given two points pj is unable to distinguish, pj must
offer the same payoff for a bet on (p at both points. Formally, a strategy for
pj is a function from p1 's local state at a point c to the payoff pj should offer
pi for a bet on W at c. Similarly, we assume that pi's strategy for accepting
or rejecting bets (that is, for computing acceptable payoffs) is also a function
of its local state.

Again, what should pi consider an acceptable payoff for a bet on W?
Suppose pi decides it will accept any bet on W with a payoff of at least
1/a when its local state is si (remember that pi's strategy for accepting
bets must be a function of its local state). Denoting by Bet(p, a) the rule
cfaccept any bet on 'p with a payoff of at least 1/a", how well does pi do
by following Bet(W, a) when its local state is si? Clearly pi will win some
bets and lose others, so we are interested in computing pi's expected profit.
This in turn depends on p1 's strategy. This leads us to compute, for each
of pj's strategies f, agent pi's expected profit when p follows Bet(W, a) and
pj follows f. Intuitively, if, for each of pj's strategies f, agent pi's expected
profit is nonnegative, then pi does not lose money on average by following
Bet( p, a), regardless of pj's strategy.

Before we can compute pi's expected profit, however, there is an impor-
tant question to answer: What probability space should we use to compute
this expectation at a point c? One reasonable choice is to take Treei, ; this
would correspond to computing this expectation with respect to everything
pi knows. Another reasonable choice would be to take Tree',. The intuition
would be that pi wants to do well for every possible choice of what pj could
do to pi. The sets Treeir correspond to the different things pj could do, since

expectation with respect to the probability space Treei,, here, and then show
that our results would not have been affected (at least in the synchronous
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setting) if we had chosen the space Treei,€ instead.
Let the value of the random variable Wf = W,(W, a) at a point d denote

pi's profit (or winnings) at d, assuming pi is following Bet(p, a) and pj
following f. Assume that 'p is measurable with respect to Si. Let Ei,[Wf]
ETe,,, [W] denote the expected value of W1 with respect to the probability

space Treei. We say pi breaks even with Bet('p, a) at c if E>,4W] 0 for
every strategy f for p. We say the rule Bet(o, a) is safe for pi at c if pi
breaks even with Bet(p, a) at all points pi considers possible at c.

To justify our definition of safe bets, we now prove that the definition
remains unchanged if we take the expectation with respect to Treei,c instead
of Tree , . We define Tree,=-safe to mean safe as defined above, and Tieei,€-

safe just as we defined safe, except that now we take the expectation with
respect to Treei,c instead of Tree,c.

Proposition 4.6: In a synchronous system, for all facts W, all agents pi,
and all points c, the rule Bet(p, a) is Treei,r-safe for pi at c iff Bet(p, a) is
Treei,.-safe for pi at c.

Our claim that ? i is the right probability assignment to use when playing
against pj is made concrete by the following result which states that 1" de-
termines for every agent pi precisely what bets are safe when betting against

Pi.

Theorem 4.7: For all facts W measurable with respect to Pi, all agents pi,
and all points c, the rule Bet('p, a) is safe for pi at c iff Pi, c [ KicW.

We view this as the main result of this chapter. It says that that Pi
determines precisely what bets are safe for pi to accept. If, using the proba-
bility assignment Pi, agent pi knows the probability of 'p is at least a, then
pi will at least break even betting on W when the payoff is 1/a. On the
other hand, if, using Pi, agent pi considers it possible that the probability
of W is less than a, then there is a strategy pj can use that causes pi to lose
money betting on W when the payoff is 1/a. In other words, P is the right
probability assignment to use when betting against pi.

While this theorem is stated only for measurable facts W, remember that
Proposition 4.3 assures us that facts of interest are typically measurable in
synchronous systems. In fact, the same theorem holds even for nonmeasur-
able facts, once we define an appropriate notion of expectation for such facts;
we consider this notion in Appendix 4.B.2
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The proof of Theorem 4.7 depends only on the fact that 'P' is induced
by Si, and is actually independent of the particular transition probability
assignment r determining the distribution on runs. In this sense it is really
Si that is determining what bets are safe for pi to accept. We can formalize
this intuition as follows. We say that a standard sample space assignment S
determines safe bets against pj in a system consisting of unlabeled computa-
tion trees if, for all transition probability assignments r assigning transition
probabilities to edges of the computation trees, the following condition holds
for the probability assignment P induced by S and r:

1', c H Kao implies Bet( o, a) is safe for pi at c

for all facts o E £(,), all agents pi, and all points c. Notice that this
defirition quantifies over all transition probability assignments r, requiring
that the probability assignment induced by S determines safe bets regardless
of the actual choice of r. Our intuition says that the "right" way to go about
constructing a probability assignment should not depend on the details of
the transition probabilities. We would like some uniform way of choosing the
probability space that does not change if there are small perturbations in the
probability; Theorem 4.7 shows us that it is always possible to construct an
assignment P7 in this way.

While the proof of Theorem 4.7 shows that Si determines safe bets against
pj, it turns out that there are other assignments that determine safe bets
against pj. If the language £(1) is sufficiently rich, however, so that there
are a lot of possible events that can be bet on, then S i enjoys the distinction
of being the maximum such assignment.

Theorem 4.8: In a synchronous system, if S is a consistent standard as-
signment, then

(a) if S < S, then S determines safe bets against pi, and

(b) if S determines safe bets against pi and £(l) is sufficiently rich, then
S <Si.

We interpret Theorems 4.7 and 4.8 as providing strong evidence that Si is
the, right c:nnlo enn- c~rn sigment n-r, +b% tha ;c fhb ,g robablt
assignment, to use when playing against an opponent with pi's knowledge.
It says that the only way for p1 to be guaranteed it is using a safe betting
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strategy against pi is by assuming the opponent is at least as powerful as
p. Intuitively, the more powerful the opponent the less confident the agent
is that it will be able to win a bet with this opponent, and the higher the
payoff the agent will require before accepting a bet. Consequently, pi is being
unduly conservative if it takes a probability assignment that corresponds to
an agent that is more powerful than pi since it may pass up bets it should
accept.1°

In the process of making this intuition precise, we can prove a theorem
that gives us further insight into relationships between sample space assign-
ments on the lattice. Recall that we have defined Kip to mean agent pi
knows a is a lower bound on the probability of p. We can extend this def-
inition to deal with intervals in a straightforward way. We would like to
define Kala~lw to mean Ki(a < Pri(p) <_ /), which should mean agent pi
knows the probability of W is somewhere between a and P3. Since W may
not correspond to a measurable set, what we really mean is that the inner
measure of V is at least a and the outer measure is at most P3. Since we
interpret Pri as inner measure when 'p does not correspond to a measurable
set, and since us*(T) = 1 - u.(Tc) for any set T, we can capture this in-
tuition in terms of our language by interpreting K '*p as an abbreviation
for Ki[(Pri(V)) _! a) A (Pr,(-p) _ 1- 0)]. To relate this definition to our
earlier definition of Kc'W, notice that Kc'V is equivalent to Klal'I. We can
now prove the following.

Theorem 4.9: In a synchronous system, if ' and P are consistent standard
assignments satisfying 7" < 1, then

(a) for every fact V, every agent pi, every point c, and all a,,8 with 0 <

a < P9 < 1, we have

V, c [ K 'I V implies ', c = K*4(p,

' 0 Strictly speaking, we should justify the fact that pi should use a rule of the form
Bet(V, a) in order to determine when to accept a bet. After all, why should such a ,imple
threshold function be appropriate? It is conceivable that a better money-making strategy
might tell pi, say, to accept a bet on W if the offered payoff is in the interval (2, 5] or [8, 101,
and reject the bet otherwise. It is not hard to show, however, that because we make no
assumption about the strategy being followed by pj (other than requiring that it be a
function of pj's local state), this second strategy is safe for pi at c iff it is safe for pi at
c to accept a bet on o if the offered payoff is in the interval r , N, i.e. if De(, A /2) i'

safe for pi at c. Consequently an optimal strategy may as well be taken to be a threshold
function like Bet(wo, a).
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(b) there exist a fact W, an agent pi, a point c, and a, 0 with 0 < a 5, 85 1
such that

c C Ki*atW and yet P, c 1 i=K'',

oK K4"'4 -v and yet P, c K-'04

If £(f) is sufficiently rich, then o EL(f).

Part (a) shows that an agent's confidence interval does not increase in the
presence of a more powerful opponent; part (b) shows that it might actually
decrease. The formula p from part (b) gives an example of a case that
agent pi might be unduly conservative by using an inappropriate probability
assignment: using ?', agent pi would reject bets on So with payoff 1/a even
though it should be accepting all such bets.

Our results show that P 'P8 has a special status among probability assign-
ments. It is a maximum assignment among consistent assignments in the lat-
tice with the < ordering, and so, by Theorem 4.9, gives the sharpest bounds
on the probability interval among all consistent probability assignments. In
addition, any other consistent probability assignment can be obtained from
7)PP° by a process of conditioning. Finally, 7?'" is the probability assign-
ment that corresponds to what decision theorists seem to use when referring
to an agent's subjective (or posterior) probability. However, as we have seen,
' pot may not always be the "right" probability assignment to use. The right
choice depends on the knowledge of the opponent offering us the bet in the
system we wish to analyze. Although 7""°" may give a smaller interval than
1" (intuitively giving sharper bounds on an agent's belief a fact is true), if
pi uses the better lower bound from P""" as a guide to deciding what bet
to accept from pj, it may wind up losing money. In fact, it follows from
Theorems 4.8 and 4.9 that Pi is the probability assignment that gives an
agent the best interval and still guarantees a good betting strategy.

Even in cases where 7"'" is the "right" choice, it is not necessarily the
probability we want to use in computations. It may not always be necessary
to obtain the sharpest interval of confidence possible. A rough bound may
be sufficient. Theorem 4.9 shows that proving a lower bound on an agent's
confidence using a certain choice of probability space implies the same bound
1,kA...- i. .... ._- A L-:A L: 11 :_ d_ an ae mL. a.

probability assignment that lies lower in lattice is that, because the individual
probability spaces are smaller, the computations may be simpler. Consider
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the definition 1'1, for example. Here the probability space we associate with
a point (r, k) consists only of points (r', k) having the same global state as
(r, k). The runs r' are the runs extending the global state r(k). This means
we can reason, about the probability of a future event given a fixed global
state. In contrast a definition such as Pool allows for the possibility that the
runs r' may extend any of a collection of global states, which may mean we
no longer have the luxury of arguing about the probability of a future event
given a fixed global state. When arguing about the level of confidence of an
agent, it seems best to choose a definition as low in the lattice as possible to
make the proof as simple as possible, but high enough to enable one to prove
a sufficiently high level of confidence.

4.6 Probability in asynchronous systems

We now turn our attention to choosing appropriate probability assignments
in asynchronous systems. We remark that even in the context of asyn-
chronous systems, the four sample space assignments discussed in the previ-
ous section-S-P°0, Sul, Sj, and S"P -still make perfect sense. The intuition
motivating these definitions remains the same; in particular, Theorem 4.7
which says that Sj determines safe bets against p, still holds.

A number of things do change, however. For one thing, Proposition 4.3
no longer holds, so many facts of interest become nonmeasurable. Equally
important, Proposition 4.5, which says that probability assignments further
down in the lattice can all be obtained by conditioning from probability
assignments higher in the lattice, also fails in general. The reason it may fail
is that if S' < S, we are no longer guaranteed that S ! is a measurable subset
of Sj,c. For example, although P < ?a'° , Treei,, need not be a measurable
subset of Treei,€. If pj can distinguish time 1 points from time 2 points but
pi cannot, and if c is a time 1 point, then Treeic consists only of the time 1
points while Treej,, consists of the time 1 and 2 points; in this case, Treei,,
is not a measurable subset of Treei,,. All our conditioning arguments used
this measurability assumption. Consequently, it is no longer true that all
consistent assignments can be obtained by conditioning on P-1°". For similar

Ies n, i goncral as,,.nchronous a mc, uSing Tree,.- and using Tree: in
the definition of a safe bet does not necessarily give the same results. (The
conditional probability argument used in the proof of Proposition 4.6 depends
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on the fact that the sets TreeiC are measurable subsets of Treei,r.) We can
prove analogues of Propositions 4.5 and 4.6 as well as Theorem 4.9, provided
we assume that S' < S and that S', is a measurable subset of Si,c for all
agents pi and points c." Unfortunately, as we shall see, this measurability
requirement does not hold in many cases of interest.

The situation is perhaps best illustrated by an example. Consider a simple
asynchronous system in which agent P, tosses a fair coin 10 times and halts;
agents P2 and p3 do nothing and never learn the outcome of the coin tosses.
This system consists of a single computation tree, a complete binary tree of
depth 10 with every transition labeled 1/2. Suppose agent P2 does not have
access to a clock, and so is unable to distinguish any of the global states in
the tree. On the other hand, p3 does have a clock, and so can tell each time
apart.

There are clearly 210 possible runs in the system, one corresponding to
each of the possible sequences of coin tosses. Since P2 cannot distinguish
any point on any of these runs, for every point c, the set S2, consists of
every point in the system. Which subsets of S2' are measurable? Since
the computation tree is finite, each individual run is a measurable set, so all
sets of runs are measurable. And since the measurable subsets of S2' are

obtained by projecting measurable subsets of runs onto S2", the sets in X"°"

are those consisting of all the points on some set of runs in the computation
tree.

Let so be the fact "the most recent coin toss landed heads". Although
this is a fact about the global state, the set of points where it is true is not
a measurable subset of S2°', since it does not consist of all the points on
some subset of runs. This already shows that Proposition 4.3 fails in this
case. Thus, we cannot talk about the probability that P2 knows p at a point
c in the tree. We can talk about the inner and outer measure of S2o,

however. Since the only nontrivial measurable set contained in S2,c(so) is the
set of points on the single run in which the coin lands heads every time, the
inner measure of this set is 1/210; similarly, the outer measure is 1 - (1/210).

While values such as 1/20 and 1 - (1/210) may seem somewhat strange

1"In part (b) of this analogue of Theorem 4.9, we must also strengthen the definition of
sufficiently rich to mean that for every global state there is a primitive proposition in 4'
true at all points of all runs passing through this global state. This is due to the fact that
consistent assignments in asynchronous systems allow a set Si,c to contain more than one
point of a given run.
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at first glance, they are not totally unmotivated. Consider the situation of
agent P2 at a point c trying to figure out the probability of heads, given only
the probability on the runs. Agent P2 has no idea which run it is in. The
only run in which it is always the case that the most recent coin toss landed
heads is the run where the coin lands heads on every toss: this run occurs
with probability 1/210. On the other hand, in all the runs except for the one
in which the coin lands tails on every toss, it is possible that the most recent
coin toss landed heads. Thus, in a set of runs of probability 1 - (1/210), it is
possible that the most recent coin toss landed heads. This means that 1/.6 0

and 1 - 1/2 1 0-the inner and outer measure of S 2( )-provide lower and
upper bounds on the probability of being in a run where the most recent coin
toss landed heads.

Now suppose that agent P2 is betting against p3 . Since p3 knows what
the time is, the sets 5,(,,k) consist of all the time k points. With respect
to the sample space assignment S 3, the fact ep is measurable. In fact, it's
easy to see that p3(S2,.((o)) = 1/2 for all points c. To sum up, we have
v-.,, c = K[1/210,1(1/210)]W and Poit, c w -K 2 2, While p3, c I- K1/2 p.12

This may seem somewhat counterintuitive, since it seems to suggest that
P2 must play more conservatively against a copy of itself than against p3,
who knows more. This is especially so since there is another line of reasoning
about this situation which would lead P2 to conclude that it knows that
the probability that the most recent coin toss landed heads is 1/2, even
without considering p3 . Agent P2 reasons as follows: "The current time is k,
although I do not know what k is. Regardless of the particular value of k,
the probability that the kth coin toss lands heads is 1/2, and hence I know
the most recent coin toss landed heads with probability 1/2." The sample
space assignment that captures this intuition would associate with the point
(r, k) and agent P2 the set of time k points in (r, k)'s computation tree agent
P2 considers possible at (r, k) (as opposed to considering all the points in the
computation tree that p2 considers possible, as is done by P-10"). But this is
precisely the assignment S3!

In order to understand this situation a little better, let us reconsider the
assignment Po".. We claim that the reason the interval [1/210, (1 - 1/210)]

t . ha i . *does no$ cont ca i 4 .. T he . 9. .w hmi old only

if S',, is a measurable subset of Si,,, for all pi and c, which we have already noted is not
the case.
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arises here is different from the reason intervals arise in the context of the
synchronous systems studied in the preceding section. In the context of
synchronous systems, because pj's strategy depends on its local state and
pi does not know which local state pj is currently in, pi has to partition
Kj(c) and view each element of the partition as an independent probability
space, computing the probability of W separately in each one. A formula
such as Ki]S0(p holds when the probability of W can range from a to 9 in the
different probability spaces. In our current example, however, there is only
one probability space; the interval arises because of the nonmeasurability of
(p. Depending on how "lucky" P, is in the choice of where in each run it
tests for heads, the probability of getting heads could range from 1/210 to
1 - (1/210).

We can view the nonmeasurability that arises due to asynchrony as a new
element of uncertainty that an adversary can exploit. Intuitively, in the coin
tossing example, when p1 plays against (a copy of) itself, since P, does not
know where in the run it is, an adversary gets to choose that. On the other
hand, when playing against p3, at least Pi knows that all the worlds in a given
sample space are time k points, for some fixed k. We can view our analysis
where we obtain the answer 1/2 without ir,oking p3 as implicitly assuming
an adversary who chooses the time k the test for W is to be performed. Such
an adversary is an adversary of the third type mentioned in the introduction.
Given any time k chosen by this adversary, the probability of V is 1/2.

We can formalize this analysis as follows. With each time k we associate
a separate computation tree corresponding to the adversary AA choosing
time k to test for (p. The probability space for P2 at each point in the tree
corresponding to A, consists of the time k points in the tree, each of which is
assigned equal probability. In each of these probability spaces the probability
of heads is 1/2, SO P2 knows that the most recent coin toss landed heads with
probability 1/2.

There is no reason, however, to restrict this third type of adversary to
simply making an initial choice of the stopping time. Suppose we have fixed
a collection of adversaries of the first type (the computation trees) and an
adversary of the second type (say pj). We define a cut through Tree!,, to

through Treeic: every run passing through Tree!,c is cut precisely once by
such a set of points. We define a type three adversary to be a function
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mapping an agent pi and a point c to a cut through Treei,,. Intuitively, pi
and pj are betting on a fact V, but neither knows precisely where in the
run the bet is taking place; it is the third type of adversary who determines
where in the run the bet is actually made. The cut through Treeic chosen
by the adversary is the set of points at which the adversary will cause the
bet to take place when the local states of pi and pj are given by c.

In the example above, when Pi plays against a copy of itself, the adversary
I;hooses one cut per computation tree, since p, considers all points in the
computation tree possible. In the case of pi playing against p3 (who knows
the time), the adversary chooses one cut for every time k; this cut must in
fact consist of all time k points in the tree. (In general, if we are considering a
set of time k points, the only allowable cut is the one consisting of all points.
This is why the issue of an adversary choosing such cuts does not arise when
considering synchronous systems.)

To make formal sense of this, suppose we are given a set A of type one
adversaries (determining the possible initial nondeterministic choices). This
determines a set of computation trees, as we have already discussed. Fix a
type two adversary, say pj. Let C be a set of type three adversaries in this
collection of computation trees (so that the adversaries in C choose stopping
times). Notice that the definition of C depends on A and pj. We can then
construct one computation tree TA,C for each A E A and C E C. For a fixed
A E A, the computation trees TA,C look identical (essentially just like TA)
for all choices of C E C except that we put C into the environment state at
each point in TA,C. The sample space assignment SC maps an agent pi and
a point c of a tree TA,C to a sample space S;_ C Tree. such that for each
run r E IZ(Treej,,), exactly one point (r,kI) E Tree',, is in S . Intuitively,
this is the point in r where the test is performed. Note that if we consider
two adversaries C, C' E C and two corresponding points c and c' in TA,C and
TA,C,, the sample spaces Si, and S,r, used by pi at these two points will in
general be different: at c, it is C that determines at which point in each run
in the tree that pi considers possible at c the test will be performed, while
at c' it is C' that makes this determination. Notice that, in the presence of
this third type of adversary, it iF no longer the case that all sample space
assignments defined in asynchronous systems are standard assignments as
they are in synchronous systems. For example, it no 'lV-nrn -- b. ' h- case

that c E S.C

Intuitively, playing against a copy of yourself places no constraints on this
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third type of adversary. To make this precise, once we fix a set of adversaries
of the first type A and consider the resulting system, we can take pts(A) to
be the set of all possible adversaries of the third type in this system.

Proposition 4.10: ,Ppost, C H= KJ lp if PIP", c H Kiap]o, for every fact (o)
agent pi, and point c.

The proof of this result shows that ?' °0' can be understood in asynchronous
systems in terms of an adversary that chooses as the time for the test to be
performed the worst possible time from pi's point of view.13

Of course, there is no reason to assume that a type three adversary must
either be restricted to choosing horizontal cuts of time k points or be allowed
to choose completely arbitrary cuts of points. Other intermediate definitions
seem plausible as well. One can imagine a partially synchronous model in
which processors cannot tell time but are guaranteed that, for every k, all
processors take their kth step within some time interval of width 6. It would
seem reasonable to require the adversary of the third type, rather than se-
lecting horizontal time k cuts or totally arbitrary cuts, to select cuts with
the property that every point in the cut is a time k point for some k falling
in some interval of width 6. We can also generalize the notion of type three
adversary slightly so as not to require that it choose a cut, but rather have it
choose at most one point per run. The intuition here is that this adversary
simply does not give pi the chance to bet in certain runs. In our coin tossing
example, such an adversary could allow pi to bet on heads only when the
coin has landed tails. The issue of defining reasonable adversaries of the third
type deserves further study.

We close this section with a comparison of our definition of probability in
asynchronous systems with that of [FZ88]. The probability assignment used
in [FZ88] in the asynchronous setting has 4uch the same flavor as that of our
7PP" . Rather than assuming that the adversary chooses at a point c a cut of
points through Treei,e, however, Fischer and Zuck assume that the adversary
chooses a cut of global states through Treei,,; that is, a set of global states
appearing in Treei,c with the property that no two global states lie on the the
same run. Intuitively, this means that if the adversary performs the test at

'3Another interpretation of this result is that the language obtained by closing a set
"f fo ̂mu. undcr t san -- I-oola connectives and mhe rzodal operators Kjf canno
distinguish the assignments P'°1 and PPt". We note that the richer language of [FH88]
can distinguish these assignments.
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one point, it performs the test at all other points with the same global state.
This seems like a reasonable restriction, but it leads to some unexpected
consequences.

Let us call the class of adversaries considered in [FZ881 state, and let the
corresponding probability assignment be p"a'e . Rather than giving formal
definitions here, we give an example to show how paiate differs from ? P" .

Consider a system in which P, tosses a biased coin which lands heads with
probability .99 and tails with probability .01. The system consists of two
runs we can denote by h and t and four points corresponding to times 0
and 1 in runs h and t. The computation tree has only three nodes, a root
a, encoding the points (h, 0) and (t, 0), a node b corresponding to the point
(h, 1), and a node c corresponding to (t, 1). Suppose P2 is able to distinguish
only the point (h, 1) from the remaining three points and suppose that (p is
the fact "the coin lands heads" (so that o is true at (h, 0) and (h, 1), and false
elsewhere). Let c be a time 0 point, say (t, 0), and consider the probability
with which pi knows v with respect to ? Pt' and Pas te. An adversary in
pts can either choose {(h, 0), (t, 0)} or {(h, 0), (t, 1)} as the set of points to
perform the experiment; W is true with probability .99 with respect to both
sets. It follows that P7pt, c [- Ki"Vo; in fact we have P1.", c j= KI'9"991 ,p.
Similarly, an adversary in state can choose either the node a or the node c as
a state at which to perform the experiment, since these are the cuts of global
states contained in {a, c}. The choice of a corresponds to the adversary in
pts that chooses {(h, 0), (t, 0)}. However, the choice of c does not correspond
to {(h, 0), (t, 1)}. In fact, there is no adversary in state corresponding to
this adversary in pts, since it would amount to choosing the nodes a and c,
both of which lie on the same run. With respect to the choice a, V holds
with probability .99; with respect to the choice c, W holds with probability 0.
Thus, we get 7)° le, c = K?°""]v. In some sense it seems that ?)P' is giving
the more reasonable answer here. Since P2 knows that, a priori, the coin
will land heads with high probability, and its information has not eliminated
either run, it should still consider heads extremely probable. 1 4

14Note that this example also shows that the adversaries in state are examples of the
more general adversaries discussed above, ha,- do not , ,- M oo-" .. per
run. For example, the adversary choosing the global state c does not choose a point in the
run h.
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4.7 An application: coordinated attack

As an example of how probabilistic knowledge can be used to-analyze pro-
tocols, and of how heavily statements made about protocols depend on the
particular definition of probabilistic knowledge used, we now apply the dif-
ferent probability assignments defined in the context of synchronous systems
to understanding probabilistic coordinated attack as defined in Section 4.3.
In [HM84] it is shown that a state of knowledge called common knowledge is
a necessary condition for coordinated attack. Recall that a formula (P is com-
mon knowledge if all agents know W, all agents know all agents know (p, and
so on ad infinitum. In the same paper it is shown that common knowledge
of nontrivial facts cannot be attained in systems where there is no upper
bound on message delivery time (and, in particular, in asynchronous sys-
tems), and hence that coordinated attack is not possible in such systems.
We now examine the relationship between probabilistic common knowledge
and probabilistic coordinated attack.

Recall from Chapter 2 that common knowledge is defined as follows.
Given a set G C {pi,... ,p,} of agents, we define everyone in G knows

Sby Eap -/PG Ki. Defining E p inductively by EOgp = V and E. =
EGE,7 1 so we define v is common knowledge to G by CGr- Ak>o EIso.
Recall that common knowledge satisfies the following statements:

1. the fized point aziom: CrV = EG(V A Coo).

2. the induction rule: From 0b D EG(ob A V) infer ib D CGW.

The first statement says that CGs is a fixed point of the equation X
EG(Vo A X). In fact, it can be shown to follow from the induction rule that
C0  is the greatest fixed point, and thus is implied by all other fixed points
of this equation [HM851.

By direct analogy, probabilistic common knowledge is defined in [FH88]
as the greatest fixed point of the equation X = E0( A X), where E, --
A pEG Kirs. l s It is easy to show that the definition of C' s satisfies the
obvious analogues of the fixed point axiom and induction rule given above.

15 At i6 shown in [ #18SI1 th;a d-fi'.;+;,,, t ; -ivalent to the lnfifitc conjunction f_
(E)ko, k > 0; however it is equivalent to the infinite conjunction of (FP)kVo, k > 0,
where we define (FP) inductively by unwinding the fixed point equation: (F*)°O = 'P
and (F.")k Eg(( A (F.) k-I)
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Now consider the probabilistic attack problem, and suppose W is the fact
"A attacks iff B attacks". In the original coordinated attack problem, since
(p is true at all points, the induction rule implies C p holds at all points.
Are there implementations of the probabilistic attack problem where Cro
holds at all points? The answer depends on the choice of probability assign-
ment. Stronger assignments yield stronger notions of probabilistic common
knowledge which make stronger requirements of the implementation.

Consider the assignment P' "t. Here the opponent offering an agent a bet
knows the entire global state at every point. If there is any point where
the attack is uncoordinated, then no run extending this point can satisfy
W. At this point W holds with probability 0 (according to Pfit), so it easily
follows that CO'p cannot hold at all points. This says that an algorithm
achieves probabilistic coordinated attack with respect to ?I'A' iff it achieves
coordinated attack. Since coordinated attack is known to be unattainable in
asynchronous systems, we cannot get probabilistic coordinated attack either
with respect to such a strong opponent.

Next consider the assignment PP°81. Here the opponent offering the bet
has precisely the same knowledge as the agent itself. Consequently, if it is
possible to reach a point at which the agent can determine from its local state
that no run extending the point can satisfy W, the agent knows (p does not
hold, and hence neither does CG1W. Consequently, our first implementation
CA1 of the probabilistic attack problem does not have the property that CIV
holds at all points (with respect to PPot), but our second implementation CA2
does. This can be proved by first observing that EcW holds at all points (with
respect to pP- ° ) and hence by the induction rule (taking the formula 0 in
the rule to be true), so does C1'p.

Notice that with respect to any consistent probability assignment, if at
some point an agent in G knows W does not hold, then CcW cannot hold
at this point (since C1,' implies Ec'W by the fixed point axiom, while Ki-"p
implies -EgV for all i G G). Consequently, it cannot be the case that CQ
holds at all points of CA1 with respect to any consistent assignment. Is it
possible for C to hold at all points of CA1 with respect to any probability
assignment? Since this algorithm guarantees W holds with probability a,
taken over the runs, the obvious solution is to make the assignment mimic
the probability distribution on the runs. In particular, consider 7P" . It is
easy to see that with this assignment, every agent knows 'p with probability
a at all points of the system. Since E*'p holds at all points, it follows by the
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induction rule that Cco holds at all points as well.
We summarize our discussion in the following proposition.

Proposition 4.11:

1. CA1 achieves probabilistic coordinated attack with respect to 7Pvrn
but not P ''.

2. CA2 achieves probabilistic coordinated attack with respect to ?'°" (and
P?,i-) but not Plt' .

3. A protocol achieves probabilistic coordinated attack with respect to
Pt" iff it achieves coordinated attack, and hence no such protocol exists

in which the generals actually attack.

This proposition shows how increasing the power of the opponent (moving
down in the lattice) strengthens the kind of guarantees that can be made for
probabilistic attack. Note that all of the probability assignments agree at
time 0, and the probability they assign to a set of points is identical to the
probability of the set of runs going through those points; i.e. if c is a time 0
point in TA and IZA(p) is the set of runs in TA satisfying a fact W about the
run, then

JLA(7Z((p)) = pO"(Treei,.(p)) = pio(Treeo(sp))
(Pref )) = CAl )).

However, at later times, it is only ?P3ri- that agrees with the initial probability
on runs. Thus, for the other probability assignments, saying that 'P holds
with probability greater than a at all points (r, k) in TA according to pi will
generally be a stronger statement than saying it holds with probability a
taken over the runs of TA.

Of course, it is perfectly conceivable we might want to consider probabil-
ity assignments besides those that we have discussed above, which will make
yet more guarantees. Considering such intermediate assignments might be
particularly appropriate in protocols where security is a major considera-
tion, such as cryptographic protocols. There it becomes quite important to
consider the knowledge of the agent we are betting against.
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We remark that a slightly different definition of probabilistic coordinated
attack is considered in [FZ88]: it is required only that the conditional proba-
bility that both parties attack together, given that one of the parties attacks,
is at least a.1 6 It is then shown in [FZ88] that this form of probabilistic co-
ordinated attack corresponds to all the agents having average belief of a
that the attack will be coordinated. We can reinterpret these results in our
language as showing that this notion of coordinated attack is equivalent to
probabiListic common knowledge with respect to another probability assign-
ment, much in the spirit of ?P'-. In particular, the probability space used
by [FZ88] for this analysis is not 7 P °", but an inconsistent probability assign-
ment. However, it should be noted that one can be led to counterintuitive
results using an inconsistent probability assignment. Consider ?P"i in the
context of CA1 . Since there is a point at which the information in agent A's
local state guarantees the attack will not be coordinated, according to PpttO
both Kco and KA-V hold at this point. In other words, the choice of Ppri-

has the effect of saying that at a point an agent can have high confidence in
a fact it knows to be false.

The preceding discussion raises another interesting point. While it is typ-
ically the case that computer science applications consider only probabilities
over runs (such applications typically require only that a condition P hold
throughout a large fraction of the runs, which corresponds to Pri-), it is
not clear that this is always appropriate. If an agent running a probabilistic
coordinated attack algorithm that is guaranteed to work with high proba-
bility over the runs finds itself in a state where it knows that the attack
will not be coordinated, then it seems clear that it should not proceed with
the attack. It may be worth reconsidering a number of algorithms to see if
they can be redesigned to give stronger guarantees. This may be particularly
appropriate in the context of zero-knowledge protocols [OMR891, where the
current definitions allow a prover to continue playing against a verifier even
when the prover knows perfectly well that it has already leaked information
to the verifier, and may continue to do so. Although it is extremely unlikely
that the prover will find itself in this situation, it may be worth trying to
redesign the protocol to deal with this possibility. While adaptive protocols,

'Aithough it is not cear from the defin.ion of pxobabil-Isc attac &,&Ver in fFZ] ... e..
what the probability is being taken, the results given ckarly assume that the probability
is being taken over the runs.
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where processors modify their actions in light of what they have learned, are
common in the control theory literature, the probabilistic algorithms that
are used in distributed systems typically are not adaptive. It seems that a
number of algorithms can be converted to adaptive algorithms with relatively
little overhead. We hope to study this issue more carefully in the future.

4.8 Conclusion

We have provided a framework for capturing knowledge and probability in
distributed systems. Our framework makes it clear that in order for an
agent to evaluate the probability of a formula W at a given point, we need
to specify the adversary (or, more accurately, adversaries) that determines
the probability space. We have described how to choose the appropriate
probability space as a function of the adversary, making no assumptions
about the strategy the adversary is following. One potentially fruitful line of
research is to understand how our results are effected if we make assumptions
about the strategies the adversary pi is allowed to follow (such as assuming
that pj is trying to maximize its payoff).

This use of adversaries may help clear up a number of subtle issues in the
study of probability, such as what the probability that a coin lands heads
is after the coin has been tossed. In addition, our approach allows us to
unify the different approaches to probability in distributed systems that have
appeared in earlier works. Of course, what needs to be done now is to use
these definitions to analyze probabilistic (especially cryptographic) protocols!

4.A Proofs of results

This appendix contains the proofs of all results claimed in the chapter.

Proposition 4.1: If Si,, is state-generated and satisfies REQ1 , then Sir
satisfies REQ2.

Proof: Given a global state g, let G be the set of points (r, k) with r(k) =
. 1 ., IV Le L __L _Z -.- y -u tecs' assalptig, ,aUu Le ,v $1- U 6DO,t US .. L LS Sr,11 . AJ t ,,. . t u ._.

that the global state encodes the adversary, each global state is contained in
precisely one computation tree. Thus, G. and 7. are contained in a single



140 CHAPTER 4. KNOWLEDGE, PROBABILITY, ADVERSARIES

computation tree, and Rg = R'(G.). Since S is state-generated, Si,, is the
union of a collection of sets of the form G.. Since Si,€ satisfies REQ1 , it is
contained in a single computation tree TA = (RA, XA, PA); and since a single
computation tree contains at most a countable number of global states, S,
is a countable union of sets of the form G.. Thus, 7Z(Si,,) is the countable
union of sets of the form 7 = Z(Gg) with g a global state in TA. By
the definition of TA, each set 7. is a measurable set of runs with positive
measure, and hence their countable union I?(Si,c) must also be a measurable
set with positive measure. It follows that Si,c satisfies REQ2. 11

Proposition 4.2: If Sic satisfies REQ1 and REQ2, then P,c is a probability
space.

Proof: We must show (see [Ha150]) that Xj,c is a set of subsets of Sic in-
cluding Si,c that is closed under the formation of complements and countable
unions, and that ii,c is a nonnegative, countably additive function on Xi,,
satisfying yL,c(0) = 0.

Let T(c) = (OA, XA, 11A). Since Sj, = Proj(RA, S,,) and lZA E XA, we
have Si,, E Xi,c. If X E Xic, then X = Proj(R, Si,c) for some R E XA; since
XA is closed under complementation, Rc C XA and Xc = Proj(R, Si,c) E
Xi,,, and hence Xi,, is closed under complementation. If X 1,X 2,... is a
countable collection of iets from Xc, then Xj = Proj(Rj, Sic) for some
Ri E XA for each j. Since XA is closed under countable union, R = UiRi E
XA. It follows that

X = UjXi = UjProj(R, Si,c) = Proj(U Rj, Sic) = Proj(R, Sj,.),

so X E Xic and Xi,c is closed under countable union.
Since Si, is contained in a single computation tree by REQ1 , and since

IZ(Si,c) E XA and AA(7l(Si, )) > 0 by REQ2 , conditional probability with
respect to 7Z(Si,c) is well-defined, and hence pi,c is well-defined. Clearly, jLi,c
is nonnegative since PA is. Furthermore, Ii,c(O) = AA(0)/A(1Z(Si,c)) = 0.
Finally, suppose X1 , X2 ,... is a. countable collection of pairwise-disjoint sets
in Xi,c. We know that X = Proj(Rj, Sj, ) for some R E XA. We can assume
every run in R passes ,t 5%, ..w can rel .ae 1++ erable

set 7Z(Si,c) n R1 ; and we can assume the R, are pairwise disjoint, since if r
is contained in both R, and Rk then some point on r is contained in both
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Xi = Proj(Rl, Si,.) and Xk = Proj(Rk, Si, ), contradicting the pairwise-
disjointness of Xj and Xk. It follows from the pairwise-disjointness of the
R1 = 1(XI) that

= AA(UX!)) = A( Z(Xi))

E ,A((xj))

and hence Ii,- is countably additive. EJ

Proposition 4.3: In a synchronous system, if S is a consistent standard
assignment and £(f) is state-generated, then 'p is measurable with respect
to S for all facts V E C(I).

Proof: Recall that L(4) is state-generated if all the primitive propositions
in 4 are facts about the global state. Recall also that 'p is measurable with
respect to S if Si,c('p) E Xi,c for all agents pi and points c. Fix an agent pi
and a point c. Let Sk denote the set of time k points in the computation tree
containing c. We claim it is enough to show that

(*) R7(Sk(W)) is a measurable set of runs for all times k and all formulas
'p E £(4').

To see this, notice that since S is a consistent assignment in a synchronous
system, Si,, contains only time k points for some k. Consequently, we have
z(Si,,(,)) = 1z(Si,.) fn R(Sk()). Since 7Z(Si,c) is measurable by REQ2,

condition (.) will imply T?(Si,c((p)) is measurable. It will follow that S , (c)
is a measurable subset of Si,c.

The proof of (*) proceeds by induction on the structure of Sp. If ' is a
primitive proposition in (I, then since £(Ii) is state-generated we know that
'p must be a fact about the global state. Arguments similar to those used for
Proposition 4.1, therefote, suce io show thai X("(s"p)) is a measurable set
of runs. The cases of negation and conjunction follow immediately from the
fact that measurable sets are closed under negation and intersection. Since
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Kilp is a fact about the global state, the arguments for such a formula is
identical to the argument for primitive propositions above.

For a probability formula 0 of the form Pri((o) a, since we consider only
uniform sample space assignments, it is easy to check that 1P is true at either
all or none of the points in Si,,; hence 7Z(Si,€(4')) must be measurable since
1Z(Si,,) itself is guaranteed to be measurable by REQ2. Since S is inclusive,
we know that d E Sid for every time k point d. Since S is consistent, we
know that Sid contains only time k points from T(d). It follows that Sk is the
union of sets of time k points of the form Si,d. Moreover, since S is uniform,
the Si,d actually partition Sk. Finally, since each Si,d is state-generated and
since there are at most a countable number of time k global states in any
given tree, we see that SA is partitioned into a countable collection of sets of
the form Si,d, and hence the same is true for Sk(jb). It follows that IZ(Sk(o))

is partitioned into a countable collection of sets of the form 1?(Si,d), and since
the sets I?(Sid) are measurable, so is their countable union Z(Sk(b)).

For QOp, notice that w is true at (r, k+1) iff OW is true at (r, k). It follows
that 1?(Sk(Ov)) = TZ(Sk+l(WO)), and hence by the inductive hypothesis for
o that 7(Sk(OWo)) is a measurable set of runs. In fact, a simple extension

of this argument (by induction on 1) shows that if TZ(Sk(o)) is measurable
then so is 1Z(Sk(Ot))).

For W U b, define W U0 0b to be the formula jb, and define W U1 ib for
I > 0 to be the formula W A ... A 01-1W A Qi. It is easy to see that
pU,0 is true at a point d iff W U1, is true at d for some I > 0. Thus,
SI(p U 4,) = Ui>o Sk('p U1 jb) and hence IZ(Sk( U 4,)) = U1 o 1Z(S( p U 4,)).
Since the induction hypothesis holds for the subformulas o and 4, the pre-
ceding paragraph shows that each set 1Z(Sk(o Ut )) is also measurable, and
hence so is their countable union Z(Sk (Wo U ip)). 01

Proposition 4.4: If S and S' are standard assignments satisfying S' < S,
then for every agent pi and point c, the set Si,. can be partitioned into sets
of the form S ,d with d E Sir.

Proof: Suppose that S and S' are standard assignments satisfying S' < S.
Since S' is inclusive, we have d E Sd _ Si,d =Si,c for every d E Si,,, and
hence Si., is the union of the S ,d with d E Si,. Furthermore, since S' is
uniform, two sets Sd and S!,e are either equal or disjoint, and hence Si,' can
be partitioned into sets of the form S',a with d E Si,. El
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Proposition 4.5: In a synchronous system, if?' and P are consistent, stan-
dard assignments satisfying P' < P, then for all agents pi, all points c, and
all measurable subsets S' E Xi.

(a) S' E Xj, (so that, in particular, S ,, itself is a measurable subset of

(b) jtj,.(S') > 0,

(C) AoS4W) =+,~ IiwSio)

Proof: Fix an agent pi, a time k point c of TA = (1?A,XA,1A), and a set
S' E X.

(a) Since S' E xAc, there must exist some subset ' E XA such that S' -
Proj(R', S ,). Without loss of generality, we can assume that ?' C
1?(S',) (since we can replace 1?' with 7'n z(S,), which must also
be measurable since REQ2 guarantees 1Z(S',) is measurable). Since
S , r Si,c and both Sf',, and Si, consist of time kc points (since P and
P are consistent assignments), we have

Proj(7Z',s ,o) = {(r',k) Si, :r rEl'} = {(r', k) E Si,: r E ?'}
= ProjR', Si,).

Thus S' = Proj(T', Si,c), which shows that S' is a measurable subset
of Si".

(b) By part (a), it follows that S' is a measurable subset of Si,. Since
we have restricted to standard assignments S', we know that S' is
state-generated, and arguments similar to the proof of Proposition 4.1
show that /%i,,(S+,.) > 0.

(c) Tracing through definitions, we see
/.A(7?(S')) _ .&(1(S'))I/.LA(7?(Si,c))

i, (nCS'.)) A(7?.S',o))I.A(7Z(S,, 0))

,,€(s'lx)
1,(s ISio).
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Proposition 4.6: In a synchronous system, for all facts so, all agents pi,
and all points c, the rule Bet(W, a) is Treei,,-safe for pi at c iff Bet(o, a) is
Tree,-safe for pi at c.

Proof: Since 1" < P ia *at, the sample space Tree,,, can be partitioned into the
sample spaces Tree, with d E Treel,€, and each such Treeid is a measurable
subset of Treei,, by Proposition 4.5. The law of conditional expectation,
therefore, states that

ETreei, [ W1 1] = E ET,.cedC[WVII Treej,dj] .i( Treejd),

where the summation is taken over all sets of the form Treei,d contained in
Treei,c. Since ?P' < ?'°", we can use part (c) of Proposition 4.5 to prove that
E I ITq= T [W1], and hence that

Ei'ric,[WI] = i T,,[WI] Ai,, ( T ree ,d).

Suppose Bet(a, o) is Tree,,-safe for pi at c. Then E i [W1] > 0 for all

points d agent pi considers possible at c and all f, which implies Ear,i,[Wf] >
0 for all points e agent pi considers possible at c and all f, and hence that
Bet(a, Wo) is Treej,:-safe for pi at c.

Conversely, suppose Bet(a, P) is not Treei,.-safe for pi at c. Then ET, 1 [Wi] <

0 for some point d agent pi considers possible at c and some f. Let f' be the
strategy identical to f on Treejd, and hence on Treei, d, but offering a payoff
of 1 everywhere else. If pj uses strategy f', there is clearly no way for pi to
win off of Treeid (the best pi can do is break even), so that ET,.J [W,] < 0

for e 0 d. Moreover, by choice of d, ET' [W,] < 0. It follows that
ET,-,.. [W,] < 0, and hence that Bet(a, (P) is not Treei,-safe for pi at c. [

Theorem 4.7: For all facts w measurable with respect to Pj, all agents pi,
and all points c, the rule Bet(W,, a) is safe for pi at c iff :P, c 1= Kjo .

Proof: Consider the evaluation of E[W] = E, [W,( , a)] for arbitrary

points c and strategies f. Since p. has the 'Gme l state at all point of
TreeiC and f is a function of pj's local state, pj offers the same payoff P for a
bet on W at all points of Tree,. Since pi is following Bet(W, a) at all points
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of Treeic, agent pi accepts the bet at all points of Treeic or rejects the bet at
all such points, depending on whether /3 1/a. If pi rejects, then EC[Wf] is
obviously 0. If pi accepts, then pi's profit is 8 - 1 at points satisfying (p and
-1 at all other points, and hence Ec[W] = /3i,,€(Tree, 0( o))-1. (Notice that
because o is measurable with respect to 7, we are guaranteed that rei,,((p)
is a measurable subset of Treei,,, and hence ( (j  i s

Suppose 7i,c = K*o. This means that p ,d(Treed(W)) _ a for all
points d agent pi considers possible at c. For evcry point d agent pi consider:
possible at c and every strategy f for pi, therefore, we have Ed[W] _ 0
since /P,d( Treefd((o)) - 1 > (1/a)a - 1 = 0 when /3 _ 1/a. It follows that
Bet(Wo, a) is safe for pi at c.

Suppose Pi, c [ Kio. This means that 1 2?eeid() < a for some
point d agent pi considers possible at c. Let f be the strategy for pj offering
a payoff of 1/a for a bet on o at all points pi considers possible at d, and
hence at all points of Treeid, and 1 elsewhere. It follows that Ed[Wf] <
(1/a)a - 1 = 0 for the given strategy f and the given point d agent pi
considers possible at c, and hence that Bet((o, a) is not safe for pv at c. 0

Theorem 4.8: In a synchronous system, if S is a consistent standard as-
signment, then

(a) if S <S ', then S determines safe bets against pj, and

(b) if S determines safe bets against pi and L(f) is sufficiently rich, then
S <s'.

Proof: Theorem 4.7 tells us that Si determines safe bets; from Theo-
rem 4.9(a) (proved below), it follows that if S < 8, then S determines
safe bets too. This proves part (a).

To prove part (b), suppose S % ', which means ,, Z Treej,, for
some agent pi and point c. It is easy to construct a transition proba-
bility assignment r inducing a distribution p on the runs of T salizfying
A(7Z(Si,.)) > p(7?(Tree,,)). To see this, notice that Six = Treej,, implies
d E Sic and d Tree,c for some time k point d in T; and if Gd is the
set of points with d's global state, then Gd 9 Si, and Gd n Treei, - 0
since S and Si are state-generated (they are standard). BR caing r to
assign high probabilities to the edges in the path from the root of T to d's
global state in T, we can guarantee that p(7?(Gd)) > 1/2. This guarantees
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that p(1Z(Si,.)) _> p (?(Gd)) > 1/2, and since Gd and , are disjoint,

that A(1?(Tree,)) < 1 - A(Z(Gd)) < 1/2; so 1 (7Z(S,,)) > A(1R(Tree?,)) as
desired.

Now let ' be the probability assignment induced by S and r, and let
P ' be the probability assignment induced by S' and T. Furthermore, let
G. be the set of points with global state c, let 4, be the fact which is true
precisely of the points in G,, and let p = -vb. Since £(f) is sufficiently rich,
it follows that 0 E 4; since £(4) is closed under negation, it follows that
lp = -?k E (II).

Since both S and Si are standard, and hence both inclusive and state-
generated, it follows that Gc g S,c n Treeic. Since W is false only at points
in Gc, and since Gc is contained in both Si,c and Treei,, it is easy to see that

=' -':,(SiloC))= 1,(z( Six)) - /i(7(Gc))

A(R(S ,o))

and
S((j = ((ee,)) - tt(1.(Gc))
, eeL( )) ( Z(Treel,))

Furthermore, since S is uniform (it is standard), any set Si,. not equal to Si,c
is disjoint from Si,, and hence from G., so/, 6(SW.e(p)) = ii,e(Si,,) = 1 for all
such sets Si,.. It follows that P , c F= Ki*T.

On the other hand, since ,(47(Si,c)) > /z(7Z(Tree,C)) and since A(1?(G 0 )) >
0, it is easy to see that a > P. Let f be the strategy in which pi offers a
payoff of 1/a on Treej,,, and suppose pi uses the rule Bet(p,a). Clearly
W, = Wf(w, a) is 1/a - 1 on Treei,(o) and -1 off this set. Thus,

E(Wf)= (G )/3+ (--1)(1-/)< (-1) a-(1-a)_0=

which means Bet(W, a) is not safe for pi at c. El

Note that the universal quantification over transition probability assign-
ments is crucial in this proof. Given a fact p false only at points in the
intersection of Si,c and Tree,,, the proof shows that a necessary condition for
1', c = Kc'W to imply Bet(p, a) is safe for pi at c is that the measure of the
runs through Sic is less than or equal to the measure of the runs through
Tree,,. in fact, this is a. suff.cient condie. Fr a n ,r i. my
be possible to constrct a set Si,c Z Tree',c satisfying this condition; but the
only way to satisfy this condition for all r is to take Si,,, _ Tree, .
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Theorem 4.9: In a synchronous system, if 1" and P are consistent standard
assignments satisfying 7' < 7, then

(a) for every fact w, every agent pi, every point c, and all a, ,O with 0 <
a < # < 1, we have

P, c H Ki"l1O implies 7', c H Kia*4Jp,

(b) there exist a fact o, an agent pi, a point c, and a, P with 0 < a < 1
such that

P1, c L K!11]T and yet 7, c = Kla' lw

P7, c V K5'-° -,v and yet P, c 1 K ° l-V.

If C(f) is sufficiently rich, then Wo L(E£I).

Proof: First we prove part (a). Suppose 7',c Kj'¢ao. This means a _<

.d.(Sid()) A ,(Si(To)) 19 for all points d E Xi(c). Choose d E K,(c).
Since 7" and ?' are consistent (and uniform) and satisfy 7' < P, the set Si,d
is the disjoint union of a collection of probability spaces S,, ,... S with
dj E SidC Ki(c), each a measurable subset of Si,d. It follows that Si,d(Wo) is
the disjoint union of S ,d1 (v),..., Sf,d,((p). An easy computation shows that
Ej 1pi,d.(S',d(W)) :- id.(Sid((P)) • Since P' 7 , Proposition 4.5 shows that
14d, can be obtained from 14d by conditioning on S ,d,. It follows that

A,,.(S,, W) = sup {0 (T') T' C S'd((p), T' E X,'d.}

= sup {1,d 1 (T')lsi,d(S ,d.) : T' C S,d,(fp), T' E ,Yid}
sup {Iida (T') : _ Si,dj ((p), T'E'

C , 4
d P (S!~

j,.(si,dj ()) 'id(S!,dj).

Combining the preceding statements, we have

a= a a i ,IdSd)

- (W)) SI

J1,..(S,. (W,))

< ,d.(Si,d((P))
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A similar argument shows d ( </3. Since these arguments hold for
all d E K(c), it follows that 7', c J= K""'v.

We now prove part (b). Since 7' < 7, it follows that Si,c contains two
distinct sets S ,r and Sid for some agent pi and points c and d. Let 1b be the
fact true at precisely the points in the set Gc of points with c's global state,
and let V = -,,b. Notice that since 7' is standard and hence state-generated,
Gc is contained in S ,c and disjoint from S,d. If £(@) is sufficiently rich, then
7P E 4 , and hence W = -1 E £(4).

Since Gc C S' C Si,c, the fact o holds with probability 1 with respect to
all probability spaces determined by 7' and 7 except Si' and Si,c. Since 7' <
7., Proposition 4.5 tells us that ,c can be obtained from /i,c by conditioning
on S{ ,c. It is easy to see, therefore, that o holds with probability

cx'(ilc -- - (Gc

with respect to S!, and probability

cx= =_

with respect to Si,c. Since ui,c(SiJ < tti,r(Si,c) = 1, however, it is easy to see
that ct' < a. It follows that 7, c H K Ia~'1 p but 7", c V Kila'Io.

On the other hand, -"p holds with probability 0 with respect to all proba-
bility spaces determined by 7' and 7 except S' and Si,. The fact -,o holds
with probability 1- a' with respect to S ,c and probability 1- a with respect
to Si,. Since a' < a, we have 1 - a < 1 - a'; setting P3 = 1 - a, it follows
that P, c H Kls'1-' o but P', c V Ki°-c. -w

Proposition 4.10: 7'os, c = K10' iff 70, c [- K s] , for every fact F,
agent pi, and point c.

Proof: Consider the adversary A E pts mapping an agent pi and a point d
to the set SAd of points defined as follows: for every run r passing through

-," . (', " Tr.",d s1iWn ,. .inSi, if such a point
exists, and an arbitrary point (r, k) E Tree ,d if all such points satisfy (p. It is
easy to see that the same set of runs pass through SAd and Treed, and that a
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run r passes through Sid(W) iff V is true at all points of r contained in Treeid.
It follows that Sjd(p) and Treej,d(w) have the same inner measure. On the
other hand, consider an arbitrary adversary B E pts mapping pi and d to
the set SBd (contained in Treei,d). Suppose the run r passes through Sid(j).
It follows from the definition of Sj,d(o) that jo must hold at every point
(r, k) E Treejd. Since SfBd must contain precisely one such point, r must pass
through SBd(p) as well. It follows that the inner measure of Srd(So) must be
at least the inner measure of Sd(p); and hence that the infimum (taken over

all adversaries B E pts) of (AB ).(SPd((o)) is precisely (jfl)(Treeid(V)). A
similar construction shows that the supremum (taken over all adversaries B E
pts) of (pA)*(S ,(p))is precisely ,7jt)*( Treeid( o)). Since these statements

are true for all points d agent pi considers possible at c, we have p1, c
Kit'p wiff Ppo°t, c K•a].

4.B Discussion

In this appendix, we discuss a few issues related to observations made in this
chapter.

4.B.1 The need for protocols

Although from a computer scientist's point of view, it seems quite natural
to assume, as we do, that all agents in a system follow some kind of a proto-
col, protocols are not quite so standard in the probability theory literature.
Interestingly, Shafer observes [Sha85] that it is necessary for us to think in
terms of protocols if we are to make sense of "conditioning on everything an
agent knows" as is done by Pilo. His argument, which we reproduce here,
is based on Freund's puzzle of the two aces (see [Fre65]; other references are
given in [Sha85]).

Consider a deck with four cards, the ace and deuce of hearts and spaces.
After a fair shuffle of the deck, two cards are dealt to Pl. Now what is the
probability, according to P2, that Pi holds both aces? First, notice that if A,
B, C, and D denote the events that P, holds two aces, at least one ace, the
ace of space, a' the ace of heaxts, respectively, Dhet

Pr(A) = Pr(A n B) = Pr(A n C) = 1, Pr(B) = 5, = PD 1
6 6' P( ..
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Suppose P, first says it holds an ace. Conditioning on this information,
P2 computes the probability P, holds both aces to be

Pr(AJB)= 1/6 1
=53/6 =3

As a result of learning p, holds at least one ace, the probability according to
p2 that P, holds both aces increases.

Suppose p, then says it holds the ace of spades. Conditioning on this
additional information, P2 computes the probability P, holds both aces to be

Pr(AIC) = 1/6 1
1 /2 3

As a result of learning Pi holds not just an ace of spades but actually holds
the ace of spades, the probability according to P2 that Pi holds both aces
increases even more. Similarly, Pr(AID) = 1/3.

But is this second computation reasonable? When P2 learns B, then P2
knows that P, has either the ace of spades or the ace of hearts. When P2 learns
C, then P2 knows that Pi definitely has the ace of spades. Is it reasonable
for the probability P2 places on event A, that Pi holds two aces, to increase
from 1/5 to 1/3 simply as a result of learning which of the two aces P, has?
It seems just as reasonable to argue that the information about which ace
Pi actually has is useless, and p2 's probability of A shouldn't change upon
hearing that C (or D) holds.

As Shafer points out, the right way for P2 to update its probability of A
depends on what protocol the agents are following. If the agents had agreed
P, would first reveal whether it held an ace, and then whether it held the ace
of spades, then the increase seems reasonable: if Pi says it holds an ace, then
P2'S learning Pi does not hold the ace of spades causes P2'S probability that
p, holds both aces goes down to 0; so learning that pi does hold the ace of
spades should make p2'S probability go up. On the other hand, if the agents
were following a protocol whereby P, first reveals whether it has an ace, and
then, if it does, reveals the suit of one of the aces it holds, choosing between
hearts and spades at random if it has both aces, then p2's probability should
"ot "hmn..a a .r*Ai1t of hearing that p. holds the ace of spades. 17 We leave
it to the reader to construct the computation trees corresponding to the two

17Although Shafer does not mention this point, the need to assume that Pl chooses
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protocols described above, and to check that using P008, we do indeed get
the right probabilities in each case. Again, the key point here is that we need
the protocol to be completely specified in order to appropriately compute the
conditional probabilities.

4.B.2 Safe bets and nonmeasurable facts

Recall that the statement of Theorem 4.7 says that for measurable facts, Pi

determines safe bets against p,. The condition of measurability is required in
order for the use of expectation in the definition of a safe bet to make sense.
Remember that Bet(W, a) is safe for p, at c if Ed(Wf) - E., (W(o, a))
is nonnegative for all points d agent pi considers possible at c, and for all
strategies f for pl. We computed in the proof of Theorem 4.7 that Ed(Wf) =

P/i.d(Si,d((P)) - 1, where P is the payoff offered by pj in Si,d (Si,d was actually
reeid). In order for 14,d(Si,d( P)) to be well defined, however, Si,d(wo) must

be a measurable subset of Si,d, which means o must be measurable.
In fact, Theorem 4.7 holds for nonmeasurable facts as well, but we must

first give a meaningful definition of expectation for nonmeasurable events.
The intuition behind the inner and outer measures si. and L* of a measure
space (S, X, I) is that p.(S') and t*(S') give upper and lower bounds on the
probability of S'; if S' is actually a measurable set, of course, these bounds
are equal to the actual probability. This is made precise by a classical result
[Hal5O] which says that if (S, X', v) extends (S, X, L) (in that X' D k and /i
and v agree on X), then for all sets X E X', we have p.(X) v(X) _ A*(X).
Moreover, the bounds described by the inner and outer measure are actually
attainable, in that for all subsets X C S, there is a probability space (S, X', v)
extending (S, X, it) such that X E X' and v(X) = u.(X); a similar result
holds in the case of outer measure.

We want to extend these ideas to expected value. More precisely, we
would like to define a notions of inner expected value and outer expected
value for a "nonmeasurable" random variable X which give, respectively,
lower and upper bounds on what should be the expected value of X if we

between hearts and spades at random it it hold% both aces in crcial here, For exPample,
suppose P2 always tells p, it holds the ace of hearts when it holds both aces. In this case,
p2's probability pi holds both aces should decrease to 0 when pl says it holds the ace of
spades.
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were to extend the measure space as above to make X measurable. This
requires some work in genezal, but in the special case where X takes on
only two values, it can be done in a straightforward way. If the two values
taken on by X are x and y, with x > y, then we define the inner and outer
expectations of a random variable X by

E.(X) = = x) + y*(X = y) and
E*(X) = x-(x = x) + A.(X = y).

It is not hard to show that these definitions agree with the expected value
if the set X = x is measurable, and that these values are attainable if we
extend the probability space in the right way to make X = z measurable.

Notice that the random variable Wf in which we are interested in fact
takes on only two values (depending on whether W is true or false). Thus,
applying these definitions, we get:

E*(W 1 ) = (/ - 1),.(Sd(p)) + (-1),C*(Si,d(IW))

- (p - 1)A(Si,d(So)) - (1 - A,(S,,dM))
= P/.(S&,d( o)) - 1,

which looks very similar to the formula computed for measurable facts. Fol-
lowing the last two paragraphs of the proof of Theorem 4.7 using this formula,
it is easy to see the rest of the proof holds, and hence that Theorem 4.7 is
true using inner expectation in place of expectation in the definition of a safe
bet.



Chapter 5

A Knowledge-Based Analysis
of Zero Knowledge

In this chapter we study the relationship between knowledge and cryptogra-
phy. In particular, we define notions of knowledge for use in the context of
cryptography, and analyze interactive and zero knowledge proof systems in
terms of these notions of knowledge.

5.1 Introduction

Much of our intuition concerning cryptography depends heavily on the con-
cept of knowledge. For example, various methods of encryption [RSA78,
GM841 allow two agents to communicate via encrypted messages knowing
that other polynomial-time agents will know little or nothing about the con-
tents of their communication (subject to certain complexity-theoretic as-
sumptions). Just as we argue informally about distributed computation in
terms of the knowledge processors have about their environment, the same
is true of cryptography. In fact, the whole point of cryptography is either
to transfer knowledge to or to withhold knowledge from various agents in
a system. While our intuition concerning cryptography depends heavily on
knowledge, researchers have yet to make this intuition precise in terms of

This chapter is joint work with Joe Halpern and Yoram Moses. An earlier version of
this work appeared in Proceedings of the 20th A CM Symposium on Theory of Computing
[HMT88].
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formal definitions of knowledge. The purpose of this chapter is to develop
definitions of knowledge that we hope will be useful in the general construc-
tion, analysis, and understanding of cryptographic protocols.

When developing such definitions, it is helpful to keep in mind concrete
examples of cryptographic protocols. One class of protocols, the class of
interactive and zero knowledge proof systems [GMR89], has received a great
deal of attention from the cryptographic community. Loosely speaking, an
interactive proof is a conversation between an infinitely powerful prover and a
polynomial-time verifier in which the prover tries to convince the verifier that
a certain fact V is true, typically a fact of the form x E L. The proof consists
of a sequence of rounds in which the verifier asks the prover a question, and
the prover answers the question. Loosely speaking, such a proof is said to
be zero knowledge if the prover does not leak any "knowledge" to the verifier:
that is, anything the verifier knows (or knows how to compute) at the end of
the proof the verifier already knows at the beginning of the proof (with the
exception, of course, of the fact V being proven).

The reason these protocols have received so much attention is that they
seem to be fundamental building blocks in the construction of other crypto-
graphic protocols. To see why this is true, consider two agents p and q both
of whom want to use a certain resource in the system, and suppose they agree
to flip a coin to determine which of them gets to use the resource first. Since
neither wants the other to be able to influence the outcome of the coin in its
own favor, how should p and q go about flipping this coin?

One such coin flipping scheme based on oblivious transfer is given by
Rabin in [Rab8l] (see also [Blu, FMR84]). This coin flipping scheme consists
of four steps:

1. Agent p first selects two distinct, odd primes and sends their product
n to agent q.

2. Agent q then selects an integer x at random from the group Z,* of
integers between 1 and n relatively prime to n, and sends M2 to p.

It is not hard to show, since n is the product of two distinct, odd primes, that
z 2 will have four distinct square roots of the form x, -x, t, and -y. Agent
p is able to compute these square roots since ii knows the facorization Of .

3. Agent p randomly chooses a square root of z 2 and sends it to q.



5.1. INTRODUCTION 155

Given one of x or -x and one of y or -y, it is not hard to show that the
greatest common divisor of x + y and n or of x - y and n is a nontrivial
divisor of n. Agent q can easily compute the greatest common divisor of two
numbers.

4. Agent q computes a nontrivial divisor of n and sends it to p.

Agent q wins the coin flip iff it sends a nontrivial divisor of n to p.
Suppose that p and q are honest and follow this protocol exactly (that is,

they do not cheat in any way). In this case, it is not hard to convince oneself
that agent q wins the coin toss with probability exactly 1/2: roughly speak-
ing, since p chooses the square root to send to q at random, with probability
1/2 agent p sends either y or -y, in which case q can compute a divisor of
n and win the coin toss; and with probability 1/2 agent p sends either X or
-x, in which case q gains no new information to help it compute a divisor
of n and presumably loses the coin toss. If p or q cheat in some way during
the protocol, however, then it is possible for q to win the coin toss with some
probability other than 1/2. The protocol depends, for example, on the fact
that the integer n constructed by p is really the product of two distinct, odd
primes as required. Since it seems possible p could construct an n not of
this form that would skew the outcome of the coin flip in p's favor, q should
demand to be convinced that n is of the correct form before continuing with
the coin flip. On the other hand, p does not want q to know any more about
the factorization of n after being convinced n is of the right form, since this
could skew the outcome of the coin flip in q's favor. If q can compute one of
the prime factors after being convinced n is of the correct form, for example,
then q can always win the coin toss. What we need here is a way for p to
convince q that n is of the right form without giving q any additional infor-
mation about n, and this is precisely what zero knowledge proof systems are
designed to do. 1

Because interactive and zero knowledge proof systems serve as building
blocks in the design of cryptographic protocols, and because the concept of
knowledge is so fundamental to our understanding of these proof systems,
we choose to begin our study of knowledge and cryptography with interac-
tive and zero knowledge proof systems. In this work; we will concentrate

'As shown in [FMR84], zero knowledge proofs can also be used to avoid problems
arising when q tries to cheat.
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on developing definitions of knowledge that let us formalize our intuition
concerning such proof systems. The notions of knowledge most appropriate
in this context, however, are far more subtle than the standard notions of
knowledge used so often in the analysis of distributed computation (and, in
particular, the notions defined in Chapter 2). Since cryptographic protocols
are typically probabilistic protocols that guarantee only that correctness con-
ditions are satisfied with high probability, definitions of knowledge such as
probabilistic knowledge discussed in Chapter 4 that incorporate knowledge
and probability will almost certainly be useful. More perplexing, however, is
the fact that the computational power of agents in cryptographic systems is
typically assumed to be restricted to polynomial-time. Recall that, accord-
ing to the standard information-theoretic definition of knowledge, an agent is
said to know all facts that follow from its local state, regardless of the com-
putational complexity of determining that these facts hold. In the context of
cryptography, however, the computational intractability of a problem is used
to keep secret certain pieces information. Cryptography is concerned with
what an agent can compute that it knows in polynomial time, and cryp-
tographic protocols typically make guarantees such as no polynomial-time
agent knows any more after eavesdropping on a conversation between two
other agents than it did beforehand. In this context, the standard definition
of knowledge is clearly inappropriate.

Our fundamental contribution is the definition of practical knowledge,
which incorporates knowledge and probability with restrictions on agents'
computational powers. This definition is based on the definition of resource-
bounded knowledge given in [Mos88], which defines knowledge in terms of
polynomial-time tests an agent can use to determine whether it knows a fact.
Using the definition of practical knowledge, we characterize interactive proof
systems in terms of a formal statement about knowledge. This statement
essentially says "at the end of a proof of x E L, the verifier knows 0 E
L," which is precisely what our intuition demands of an interactive proof
system. Furthermore, using the definition of practical knowledge, we state
a property of zero knowledge we call knowledge security, and prove that any
zero knowledge proof system satisfies this property. Loosely speaking, this
property says "the prover in a zero knowledge proof of x E L knows, with
high probability, that if the verifier knows a fact (p at the end ofth e pof,,
then the verifier already knows x E L D (p at the beginning of the proof."
This captures our intuition that a zero knowledge proof does not "leak"
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knowledge of any fact other than facts following from 7 E L, the fact the
prover initially set out to prove.

Related to the concept of knowing a fact is knowing how to do something
(how to perform a given operation). There is a difference, for example,
between knowing the fact that an integer is composite and knowing how to
generate a prime factor of the integer. Zero knowledge proofs are intended not
to leak any knowledge of this kind as well as any knowledge of facts. While
this concept of "knowing how" has also been of great interest in philosophy
and Al (see [Moo85]), standard notions of knowledge do not capture this
aspect of knowledge. We define a notion of knowing how to generate a y
satisfying a relation R(x, y), again incorporating knowledge and probability
with bounds on agents' computational resources. In the context of a proof
of : E L, for example, we might take the relation R(x, y) to mean "y is a
prime factor of x." With this definition, we can again state a property of zero
knowledge proof systems we call generation security, and prove that any zero
knowledge proof system satisfies this property. This property essentially says
"the prover in a zero knowledge proof of x E L knows, with high probability,
that if the verifier knows how to generate a y satisfying R(c, y) at the end
of the proof, then the verifier knows how to do so at the beginning of the
proof." This captures our intuition that during a zero knowledge proof the
prover does not "leak" to the verifier any knowledge of how to do anything,
let alone any knowledge of facts.

We find it interesting that, while these two properties (knowledge and
generation security) capture everything the popular intuition says we want
from zero knowledge proof systems, we are unable to prove that any proof
system satisfying these properties is zero knowledge. This raises the inter-
esting question of whether the cryptographic definition of a zero knowledge
proof system is one of several possible implementations of what we should be
calling zero knowledge, or whether there is some crucial aspect of this clever
definition of zero knowledge the popular intuition is missing.

Other questions about zero knowledge proof systems also arise in this
framework. For example, recall that interactive and zero knowledge proof
systems are defined in the context of infinitely powerful provers, but only
polynomial-time verifiers. In practice, however, both the prover and the veri-fier are polvny, _f =1- nc-,.,- - Alt.hough .,mof I .. .-^- -

fierarepolnomil-tme 1+1~~iiF mst of the prodf syst-m deflned
in the context of infinitely powerful provers can be followed by polynomial-
time provers if these weak provers are supplied with some secret information
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(such as the factorization of n in the coin flipping example above), an in-
teresting question to ask is whether any properties of these proof systems
change as a result of the fact that the prover is a polynomial-time agent and
not infinitely powerful. For example, suppose we are given an interactive
proof system for membership in a language L defined in the context of in-
finitely powerful provers, and suppose we run this protocol in the context of
weak provers. Is this protocol still a proof system for membership in L, or
does it actually prove more or less than simple membership in L?

In order to answer such questions, we define weak interactive proof sys-
tems in which the prover (as well as the verifier) is restricted to probabilistic,
polynomial-time computation. We prove that if L has a weak interactive
proof system, then L must be contained in BPP (and hence that the ver-
ifier can determine whether x E L on its own without even consulting the
prover). Since the interesting languages having proof systems in the context
of infinitely powerful provers are not known to be contained in BPP (see
[GMR89, GMW86]), these proof systems must prove more to the verifier
than simple language membership when run by polynomial-time provers. In
fact, we can prove in a precise sense that such proof systems must actually
be proofs about the prover's knowledge. Furthermore, we show that, under
natural conditions, the notions of interactive proofs of knowledge defined in
[FFS87] and [TW87] are instances of such weak interactive proofs of knowl-
edge. In this framework, using the language of knowledge, we can make
precise several differences between these two notions of proofs of knowledge.
Finally, we show that zero knowledge weak interactive proofs guarantee the
same type of security with respect to the facts they prove as zero knowledge
interactive proofs guarantee with respect to language membership.

We believe that our analysis provides a great deal of insight into (and
support for) the definitions in [GMR89] and their extensions to the case of
proofs about knowledge in [FFS87, TW87]. None of our technical results
about the definitions themselves is very deep; the difficulty was in coming up
with the right notions of knowledge to use when thinking about them. While
the definitions of knowledge we give here are motivated by interactive and
zero knowledge proof systems, we believe they are potentially useful when
thkng about cryptographic protocols in general. We note that Fischer and

uck t ,LoiJ also consider --otJ.ios of A±WTA b..... fn n ,-,"

of knowing how to generate) for use in the context of interactive and zero
knowledge proof systems, and use their definitions of knowledge to analyze
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an interactive proof of quadratic residuosity. We believe that thinking about
interactive and zero knowledge proof systems (and cryptography in general)
in terms of knowledge provides a good framework within which to think
about cryptographic definitions and their appropriateness.

The rest of the chapter is organized as follows. In the next section, Section
5.2, we give the cryptographic definitions of interactive and zero knowledge
proof systems. In Section 5.3, we show how these definitions motivate the the
definition of practical knowledge. In the following Sections 5.4 and 5.5, we
show how practical knowledge can be used to characterize interactive proof
systems in terms of knowledge, and how practical knowledge can be used to
make precise the intuition that the verifier in a zero knowledge proof does
not know any more at the end of the proof than it did at the beginning. In
Section 5.6 we define the notion of "knowing how," and show that, in a precise
sense, the verifier cannot do any more at the end of a zero knowledge proof
than it could at the beginning. Section 5.7 introduces weak interactive proofs,
relates them to the proofs of knowledge of [FFS87, TW87], and proves that
zero knowledge weak interactive proofs are secure in the senses defined above.
Finally, in Section 5.8, having characterized the definition of an interactive
proof system in terms of knowledge, we sketch an example of how we can
use this characterization to reason about interactive proof systems. More
precisely, we prove the familiar result that the sequential composition of
two interactive proofs is itself wn interactive proof. The chapter ends with
Appendix 5.A, in which we give the proofs of the results claimed in this
chapter.

5.2 Interactive and Zero Knowledge
Proof Systems

We begin with the formal cryptographic definitions of interactive and zero
knowledge proof systems, and a few informal examples.

5.2.1 Interactive protocols

Recall that, loosely speaking, an interactive proof is a conversation between
a prover and a verifier in which the prover tries to convince the verifier that
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a certain fact is true. This idea of a conversation between two agents is made
precise by the definition of an interactive pr .Aocol.

Formally, an interactive protocol [GMR89] is an ordered pair (P, V) of
probabilistic Turing machines, where P and. V are intuitively descriptions of
the protocols to be followed by the prover p and the verifier v, respectively.
The Turing machines P and V share a read-only input tape; each has a private
one-way, read-only random tape; each has a private work tape; and P and V
share a pair of one-way communication tapes, one from P to V being write-
only for P and read-onloy for V, and the other from V to P being write-only
for V and read-only for P.

A run of the protocol (P, V) proceeds as follows. Initially, the common
input tape is initialized with some string x, the two random tapes are ii-
tialized with infinite strings of independent, random bits, the two work tapes
are initialized with strings s and t, 2 and the two communication tapes are
blank.3 The remainder of the run consists of a sequence of rounds. During
any given round, V first performs some internal computation making use of
its work tape and other readL'le tapes, and then sends a message to P by
writing on V's write-only communication tape (which is P's read-only tape);
P then performs a similar computation. It is not hard to see, for example,
that we can view the coin flipping example given in the introduction as a
two-round interactive protocol.

At any time during a rui. of an interactive protocol (P, V), either P or V
can halt the interaction by entering a halt state. V can accept or reject an
interaction by entering an accepting or rejecting halt state, respectively, in
which case we refer to the resulting run as either an accepting or rejecting
run. The ruaning time of P or V during a run of (P, V) is the total number
of steps taken by P or V, respectively, during the run. We assume that V is
a probabilistic Turing machine running in time polynomial in JIx, and hence
that it can perform only probabilistic, polynomial-time computations during
each round, and participate in only a polynomial number of rounds. Conse-
quently, we can assume that V always halts the interaction after a polynomial

2The the need for allowing initial values on the work tapes was first observed in [Ore87,
TW87]; we will return to this issue when we define zero knowledge in Section 5.2.3 and
weak interactive proof systems in Section 5.7.

waluy, since we want to ma intaractive protec11. aseubvnuitnes of oth#v nrot.cols:
it is enough to assume the unread cells on the communication tapes, the cells to the right
to the tape heads, are blank.
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number of rounds, and always enters either an accepting or rejecting state.
We will make no assumption about the running time of P for the moment,
although in Section 5.7 (when we consider wealk provers) we will assume that
P runs in probabilistic, polynomial-time as well.

In terms of the model of computation defined in Chapter 2, the system
corresponding to the interactive protocol (P, V) consists of two agents, the
prover p and the verifier v. Notice that we distinguish the agents p and v
from the protocols P and V they follow. A run of this interactive protocol is
an infinite sequence of global states, where each global state consists of one
local state for the prover p and one for the verifier v. Agent p's local state is a
tuple consisting of a description of the Turing machine P, the current round
number (an interactive protocol is a synchronous protocol), the contents of
the input tape, the finite prefix of its random tape read up to this point, the
contents of its work tape, the contents of the two communication tapes, and
the position of the tape heads on each of these tapes; agent v's local state
is defined in a similar fashion. We assume for the sake of convenience that
prover and verifier each encode their complete history on their work tapes.
Since we think of the prover and verifier as alternating steps, we think of
the verifier as being active at even times, and the prover being active at
odd times. It is not hard to see that the protocols described by the Turing
machines P and V can be captured in terms of the definition of a protocol
given in Chapter 2. We denote the system consisting of all possible runs
of (P, V) by P x V. The following systems will also be useful later in this
chapter: P x V"P, the system consisting of the union of the systems P x V*
for all probabilistic, polynomial-time V*; P x V, the system consisting of the
union of the systems P* x V for all Turing machines P*; and PP x V, the
system consisting of the union of the systems P* x V for all probabilistic,
polynomial-time P*.

5.2.2 Interactive proof systems

The next step in the definition of a zero knowledge proof system is to define
what it means for an interactive protocol to be a proof system. Loosely
speaking, an interactive protocol is a proof system for a language L if the

. -t common inpxL w hi probabiiy when x E L and

rejects with high probability when x 0 L.
Given an interactive protocol (P, V), we denote by (P(a), V(t))(x) the
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random variable assuming as values runs of the protocol (P, V) in which the
input tape is initialized with x and the prover and verifier work tapes are
initialized with s and t. More precisely, we denote by (P(a), V(t))(m) the
random variable mapping a sequence p of coin flips to the run of (P, V) in
which the common input tape is initialized with z, the prover's work tape
with s, and the verifier's work tape with t, and p is the sequence of coins
flipped by the prover and verifier during this run.4 We write '(P(s), V(t))(z)
accepts' to denote the fact that the run assumed by (P(s), V(t))(z) as a value
is an accepting run. An interactive protocol (P, V) is said to be an interactive
proof system for a language L if the following conditions are satisfied:

" Completeness: For every k > 1 and sufficiently large z, and for every a
and t,

if x E L, then pr[(P(s), V(t))(x) accepts] _ 1 - I[ - k .

" Soundness: For every k > 1 and sufficiently large x, for every P*, and
for every s and t,

if x V L, then pr[(P*(a), V(t))(z) accepts] I - A' .

We use "sufficiently large x" as a shorthand for "there exists NA _ 1 such
that for every x satisfying IzI Nk." The subscript k in Nk reflects the fact
that the notion of "sufficiently large" depends on the size of k. Without loss
of generality, we can always assume that the same value PNk is used in both
the soundness and completeness conditions.

We refer to p as the "good prover" when it is running P, and to v as
the "good verifier" when it is running V. The completeness condition is a
guarantee to both the good prover and the good verifier that if z E L, then
with overwhelming probability the good prover will be able to convince the
good verifier that z E L. The soundness condition is a guarantee to the
good v,-rifier that if x V L, then the probability that an arbitrary (possibly
malicious) prover P* is able to convince the good verifier that z E L is very

4We sometimes refer to a run assumed as a value by (P(s), V(t))(z) as "a run of (P, V)
on input x with . and t." We often abuse notation and use (P(s), V(t))(z) to denote an
arbitrary such run, or even the set of all such runs. The meaning will always be clear from
context.
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low. Intuitively, therefore, the verifier "knows" that z E L when it accepts,
since the chance of accepting when z L is so low.

We note that this definition of an interactive proof system is stated in
terms of a distribution over coin flips. This definition can be translated
immediately into a statement in terms of a distribution over runs using the
framework given in Chapter 4 as follows. Notice that once we fix the initial
state (meaning that we fix P, V, s, t, and z), we-can view the runs with this
initial state as a single computation tree as defined in Chapter 4. Recall that
P x V is the system consisting of all possible runs of (P, V), and that P x V
is the system consisting of the union of the systems P* x V for all Turing
machines P*. In terms of the assignment Plut, the soundness condition
says that the fcnrmula Pr[Oaccept] _> 1 - jzj -j is true at all initial points of
P x V satisfying : E L, and the completeness condition says that the formula
Pr[Oaccept] _ Iz[- k is true at all initial points of P x V satisfying z V L. In
this chapter, we are careful to write pr[o] >_ a when the probability space is
a set of coin flips, and to write Pr[Wo] >_ a when the probability space is a set
of runs (and, in particular, when Pr[o] > a is to be. interpreted as a formula
in our logic of knowledge and probability).

One of the best known examples of an interactive proof system is the
proof system for graph isomorphism from [GMW86]. Two graphs Go and G1

are said to be isomorphic if there is a bijection h between the nodes of Go and
G, with the property that (u, V) is an edge of Go iff (h(u), h(v)) is an edge of
G1. The graph isomorphism problem is formulated in terms of membership
in the language of ordered pairs (Go, G1), where Go and G1 are isomorphic
graphs. One simple interactive proof system for graph isomorphism is for the
prover, on input (Go, Gi), to send the verifier an isomorphism h between Go
and Gi, and have the verifier check that h is indeed an isomorphism; but this
clearly gives the verifier more information than the simple fact that the two
graphs are isomorphic: it actually gives the verifier an isomorphism! The
protocol of [GMW86] is not this explicit. Suppose h is an isomorphism from
Go to G1, which can either be computed by an infinitely powerful prover or
supplied as auxiliary input to the prover as an initial value on its work tape.
The protocol consists of n = I(Go, G1 )j rounds, where each round consists of
the following sequence of steps:

1. The prover

(a) chooses a random permutation 7r of the vertices of Go = (Vo, Eo),
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(b) computes H = (Vo, F), where H is the graph isomorphic to Go
defined by (7r(u), 7r(v)) E E iff (u,v) G E0 , and

(c) sends H to the verifier.

2. The verifier chooses a bit a at random and sends a to the prover.

3. The prover sends the verifier an isomorphism from Ga to H: if a = 0,
the prover sends h; if a = 1, the prover sends rh - 1.

4. The verifier checks that the mapping received from the prover is indeed
an isomorphism from Ga to H.

The verifier accepts at the end of n rounds iff all n iterations of the protocol
are successfully completed.

It is not hard to show that this interactive protocol is indeed an inter-
active proof system for graph isomorphism. If the two graphs Go and G1
are isomorphic, then the prover will always be able to send the verifier an
isomorphism r or rh - 1 from Go or G1 to H, depending on which is requested
by the verifier, and hence will always cause the verifier to accept. Thus, the
completeness condition is satisfied. If the two graphs Go and G1 are not iso-
morphic, then the graph H sent to the verifier by the prover (by any prover,
in fact) cannot be isomorphic to both Go and G1, and the fact that the veri-
fier chooses the bit a at random means that with probability 1/2 the verifier
will ask the prover for an isomorphism between H and the graph to which
H is not isomorphic, which the prover will certainly be unable to do. The
probability, therefore, that a prover (any prover) will be able to supply the
requested isomorphism on each iteration, and hence cause the verifier to ac-
cept incorrectly, is at most 1/2n". Thus, the soundness condition is satisfied,
and the protocol is an interactive proof system !or graph isomorphism.

This discussion shows that the verifier can use the protocol above to
determine (with the prover's help) whether two graphs are isomorphic. It
is not initially clear, however, that the verifier cannot use this protocol in
some "unauthorized" way to determine whether some other fact is true. For
example, suppose that the verifier chooses the a's in some way depending on
the graphs H sent by the prover, rather than choosing the a's at random as
required by the protocol. IS I possib - t4, , if. r to hPotocl.in
this way, and then compute whether a certain value x is a quadratic residue
modulo n, where n is the number of vertices in the two graphs; or then
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determine whether one of Go or G1 is isomorphic to a third graph G? The
intuition behind zero knowledge is that such use of the protocol should be
impossible.

5.2.3 Zero knowledge proof systems

This intuition that the verifier cannot use the graph isomorphism protocol
to determine the truth of facts other than whether the two input graphs Go
and G1 are isomorphic is captured as follows. Loosely speaking, we say that
an interactive proof system (P, V) is zero knowledge if, whenever x E L, the
verifier is able to generate on its own the conversations it could have had
with the prover during an interactive proof of x E L. Consequently, the fact
x E L is the only knowledge gained by the verifier as a result of the proof
of x E L: if the verifier is able to determine the truth of some other fact
after conversations with the prover, then the verifier is able to determine the
truth of the fact on its own by generating these conversations on its own.
In particular, if it is possible for the verifier to use the graph isomorphism
protocol to determine whether one of Go or G1 is isomorphic to a third graph
G, then it is possible for the verifier to determine the truth of this fact on its
own without even talking to the prover.

The intuition that the verifier can generate these conversations on its own
is captured as follows. Consider runs of the protocol (P, V) with input x and
work tapes a and t. From the verifier's point of view, a conversation with the
prover (that is, a run) is uniquely determined by the verifier's local history
of the run, where the verifier's local history is the sequence of local states
the verifier assumes during the run. Intuitively, when we say that the verifier
can generate on its own the conversations it has with the prover, we mean
there is a Turing machine M that on input x and t generates local histories
with the same distribution the verifier would see these local histories during
runs of (P(s), V(t))(x).5

SThis intuition is formulated slightly differently in [GMR89]. They note that, given z
and t, the verifier's view of a conversation with the prover is uniquely determined by the
finite sequence p of random bits it uses during the conversation together with the finite
sequence ai, ... ,an of messages it receives from the prover; everything else the verifier
sees during the conversation (e.g., the messages it sends) can be efficiently computed given
this information. They call the tuple (p, a, ... , a,) the verifier's view of the run, and say
that the verifier can generate on its own the conversations it has with the prover if there
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This is made precise as follows (cf. [GMR89, GMW86, Ore87]). Suppose
we have some domain Dom whose elements are of the form (m, .), where x is
a string and 9 is a vector of strings. Suppose for each (z, 9) E Dom we have
two random variables U.,V and V,, together with their associated probability
distributions. The families {U.,, : (m, 9) E Dom} and {V.,g : (z, 9) E Dom}
are said to be perfectly indistinguishable if the distributions of U,,& and V.&
are identical for all (x, 9) E Dom.

Given an interactive protocol (P, V*), we denote by (P(a),y_.(t))(x) the
random variable assuming as values the verifier's local histories of runs of
(P(s), V*(t))(x), where the distribution is determined by the coins flipped
by the prover and the verifier. More precisely, we define (P(s),V*(t))(z) to
be the function mapping a sequence p of coin flips to the the verifier's local
history of that run of (P(s), V*(t))(x) in which p is the sequence of coins
flipped by the prover and the verifier. Given a probabilistic Turing machine
M, we denote by M(t, x) the random variable assuming as values the outputs
generated by M on inputs t and x, where the distribution is determined by
the coins flipped by M. An interactive proof system (P, V) for L is said to
be perfect zero knowledge (cf. [GMR89]) if for every verifier V* there is a
probabilistic Turing machine Mv. such that

1. Mv.(t,x) runs in expected time polynomial in I 1, and

2. the families

{(P(s),VE7(t))(x) : (x,s,t) E Dom} and {Mv.(t,x) : (xs,t) E Dom}

are perfectly indistinguishable, where (z, a, t) E Dom iff x E L, a is a
possible input f - P, and t is a possible input for V*.

This definition says an interactive proof system is perfect zero knowledge
if the verifier V* can generate local histories on its own, using Mv., with
precisely the same distribution it would see these local histories during runs
of (P, V*) on input x with a and t.

is a Turing machine M that on input z and t generates views with the same distribution
the verifier would see these views during runs of (F, V) on input x with a aud 1. Thra
two formulations are equivalent, of course, since the local history is efficiently computable
from the view, and vice versa.
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It is not too hard to show, for example, that the interactive protocol for
graph isomorphism given above is actually zero knowledge [GMW86]. To
see this, fix a verifier protocol V*, and let us construct a simulating Turing
machine Mv. that generates local histories (one local state at a time) with
the same distribution the verifier would observe during runs of (P, V*). The
Turing machine Mv. is defined as follows: for each round i = 1,..., n,

1. Mv. first tries to guess the bit ai that V* will choose: Mv. chooses a
random bit /3.

2. Mv. then chooses a random permutation 7ri of the nodes of G, and
writes on V*'s input communication tape the isomorphic copy Hi of
G6 defined by (7ri(u), Tri(v)) is an edge of Hi iff (u, v) is an edge of Go.

3. Mv. simulates the Turing machine V* until V* writes a bit ai on its
output communication tape.

4. My. reads a1 .

(a) If a, =3, then Mv. writes r on V*'s input communication tape
and outputs the verifier's local state. More precisely, Mv. outputs
three local local states: the state after the prover sends Hi, the
state after the verifier sends aj, and the state after the prover
sends ri.

(b) If a 0 P3, then Mv. rewinds V* to its configuration at the be-
ginning of this iteration (this includes erasing Hi from V*'s input
communication tape) and repeats steps 1-4.

The first key observation here is that, when the two graphs Go and G1
are isomorphic, a random permutation of Go is a random permutation of G1.
It follows that the probability of generating H by choosing G# at random
and choosing a permutation of GQp at random is equal to the probability
of generating H by choosing a permutation of Go at random. The second
key observation is that, although Mv. may have to try a number of times
before it can finish the ith iteration and generate the graph Hi, the tries

3,r11 4.,,l. .. 1. J.v. o ,..,,,L Xu,.L: v € ~ u n t n i
1Aeindepe-ndent. Ct f0llow tath cr onditina probabiity a graph i

generated on the kth try for the ith iteration, given that the first k - 1
tries have failed, is the same for all k; and hence that the probability H is
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generated by Mv. on the ith iteration is equal to the probability the prover
outputs H in the ith round. Since the remainder of the ith round is simply
a simulation of (P, V*), it follows that the distributions generated by (P, V*)
and MV. are identical. (We leave it to the reader to verify that the expected
number of tries required for Mv. to complete the ith iteration is 2, and hence
that Mv. runs in expected polynomial time; see [GMW86].)

The requirement that MV. generates local histories with precisely the
same distribution with which they occur during runs of (P, V*), however, is
a very strong requirement. Since we are interested in what a polynomial-time
verifier can learn as a result of a conversation with the prover, it should be
sufficient if (cf. [GM84]) no polynomial-time test (meaning no test that can
be used by a polynomial-time verifier) can detect any difference between the
distributions generated by MV. and (P, V*).

This intuition is formalized as follows (cf. [GMR89, GMW86, TW87,
Ore87]). Two families {U,, : (x,) E Dom} and {V,,9: (x,,) E Dom} of
random variables are said to be polynomially indistinguishable if for every
probabilistic, polynomial-time algorithm M and every constant k > 1 there
exists a constant NM, > 1 such that for all x with Iz1 - Nm,, and all V with
(Z, ) E Dom we have

Ipr[M accepts U,] - pr[M accepts V.,,]I < Iml- k.

It is important to notice that the probability is being taken over both the
coin flips of M and the distributions of U,, and V,V. It is also important
to notice that the quantification over x (e.g., the common input) is not the
same as the quantification over g (e.g., the auxiliary inputs to the prover and
verifier).

The definition of what it means for an interactive proof system (P, V)
for L to be (polynomially) zero knowledge is obtained by replacing perfect
indistinguishability with polynomial indistinguishability in the definition of
perfect zero knowledge. This definition of zero knowledge is actually the def-
inition given in [GMW86] (and also in [Ore87]). This is the definition of zero
knowledge we use in the remainder of this chapter. Other notions of zero
knowledge based on other notions of indistinguishability (statistical indistin-

U& & % I L-bonai.&g, & 0. "v-.V -.-.. , --- ----- ---- I

Since these notions of indistinguishability imply polynomial indistinguisha-
bility, and since our results are proven in the context of polynomial indistin-
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guishability, our results (Theorems 5.5, 5.6, and 5.7) hold in the context of
these other notions of indistinguishability as well.

5.3 Knowledge

With these examples in mind, we now define notions of knowledge for use in
the analysis of cryptographic protocols. Among other things, these examples
have two distinguishing features.

First, they are probabilistic. Correctness conditions (such as the sound-
ness and completeness conditions for an interactive proof) guarantee that
given properties hold with high probability, but not with certainty. Thus,
while agents are justified in having a high degree of confidence that these
properties hold, agents do not know they hold. Clearly, some definition of
knowledge incorporating probability such as probabilistic knowledge defined
in Chapter 4 will be useful here.

Second, and most important, the security of a zero knowledge proto-
col depends on the fact that the verifier's computational power is restricted
to polynomial time, since the protocol's security depends on the fact that a
polynomial-time agent cannot distinguish distributions on local histories gen-
erated by My. and (P, V*). In general, a common feature of cryptographic
protocols is the use of computational intractability to keep information se-
cret. While we are willing to accept the fact that an infinitely powerful
verifier might be able to make unexpected use of a zero knowledge proof,
we are not willing to accept the possibility a polynomial-time agent could
increase its knowledge in the same way. To study such protocols in terms
of knowledge, therefore, requires a definition of knowledge that accounts for
bounds on an agent's computational power.

Recall that, while the need for such definitions of knowledge accounting
for an agent's computational powers is acutely apparent in the context of
cryptography, we have already seen the need for such definitions in Chapter
3, even in the absence of cryptography. In the sending or receiving omis-
sions models, the tests for common knowledge used by an agent to determine
whether a fact is common knowledge are easily-computable functions of the
agent's local state. The same is typically true for most work in the literature
using knowledge to analyze distributed computation. For this reason, using
information-theoretic definitions of knowledge (definitions that do not take
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into account agents' limited computational power) does not lead to trou-
ble. In the generalized omissions model, however, the same tests for common
knowledge are no longer easily computable. We therefore concluded in Chap-
ter 3 that information-theoretic definitions do no capture all relevant aspects
of simultaneous coordination in this model. A major challenge presented
here, therefore, is to define knowledge in a way that accounts for bounds on
agents' computational powers.

5.3.1 Knowledge and Probability

As we saw in Chapter 4, there are a number of meaningful definitions of
probabilistic knowledge in the context of synchronous systems, systems such
as the ones we consider here. Since the prover p seems to be the natural
choice for the verifier's "opponent" in an interactive proof system, arguments
in Chapter 4 imply that P1P, the assignment that conditions on the joint
knowledge of both the prover and the verifier, is the "right" assignment for
the verifier to use. In this chapter, however, we will use the assignment P1-,,
the assignment that assigns to an agent and a point c the probability space
of all points with c's global state.

The choice of this assignment is due to the fact that we will be interested
in the truth of formulas of the form K'o at time 0 points. In Chapter 4,
we noted that all of the assignments P"', PP, 7'", and even are
equivalent at time 0; that is, the probability spaces they assign to a given
agent at a given point are identical. This means that a formula Ko is true
at time 0 with respect to one of these assignments iff it is true with respect to
all of them. Consequently, from a semantic point of view, the exact choice of
the assignment is irrelevant. From a computational point of view, however,
1 *' has several advantages. First, the probability spaces assigned by 1""
are independent of the agent (they depend only on the current global state).
Second, the probability space assigned to a point is uniquely determined by
the distribution on the runs extending this point. Since interactive and zero
knowledge proof systems are defined in terms a distribution on runs (that is,
the distribution on the runs extending initial points), the definition of 1
seems most closely related to the definition of such proof systems. Finally,
th- .;mie natur.e of ", ,Vf i n will amplify our analysis slightlv.

With these observations in mind (that we can prove our results in terms
of P,1I and know they will know in terms of any other assignment of interest,



5.3. KNOWLEDGE 171

and that PJ1, simplifies our analysis), we fix 1P" as the probability assign-
ment used in our analysis. Having fixed the assignment P101, we can safely
omit P f "' from the left side of the turnstyle '=' in formulas involving prob-
abilistic knowledge without introducing any ambiguity. Furthermore, since
the operators Pri are identical for all agents pi, we can omit the subscript
i. We reiterate the point made in Section 5.2.1 concerning the formulas
'pr[[(] _> a' and 'Pr[W] _ a': we write 'pr[io] > a' when the underlying
probability distribution is sequences of coin flips, and 'Pr[o] > a' when this
distribution is points or runs (and, in particular, when 'Pr[(] _ a' is meant
to be interpreted as a formula in our language of knowledge and probability).

5.3.2 Knowledge and Computation

We now turn our attention to definitions of knowledge that account for
an agent's limited computational power. Intuitively, we want to restrict an
agent's knowledge to what it can compute. As Moses discusses in [Mos88],
however, there is more than one way to do this. The motivation for our
definition is that we want to use our definition of knowledge to construct and
analyze protocols. The tests an agent uses to determine what it knows (and
hence what actions to perform) in the course of a protocol are allowed to be
virtually any function of the agent's locai state. The only thing that restricts
the tests an agent can perform is the agent's limited computational power.
This is the fundamental intuition underlying our definition of practical knowl-
edge, a definition of knowledge incorporating both probability and bounds
on an agent's computational resources. The exact definition of practical
knowledge is best motivated by way a sequence of intermediate definitions.

Resource-bounded knowledge

The definition of resource-bounded knowledge given in [Mos88] succinctly
captures this intuition that it is the bounds on an agent's computational
resources that restrict the tests the agent can perform, and hence what the
agent can know. Loosely speaking, this definition says that a polynomial-
time agent knows a fact only if there is a polynomial-time test the agent can
use to determ;ne that it know+ this fc u. sT i....&"i c ... I. .... :a1 t

any complexity class (see [Mos88]), and not just polynomial-time. However,
since cryptography is typically concerned with what an agent can learn using
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probabilistic tests running in time polynomial in some parameter determined
by its local state (a parameter such as Iml, the length of the common input),
the class BPP seems- to be the complexity class of most relevance to cryp-
tography. We therefore restrict our attention to knowledge with respect to
the class BPP.

The notion of a BPP test an agent can use to determine whether it knows
a fact W can be made precise as follows. Given a system R, a prbabilistic
algorithm M is said to be a BPP test for Ko in R if, for all points (r, m)
of R,

1. M's input is q's local state rq(m),

2. M runs in time polynomial in I1, where x is the common input recorded
in rq(m),

3. M accepts with probability at least 2/3 if (r,m) 1= KqW, and rejects
with probability at least 2/3 if (r, m) Kqip. 6

This definition essentially says that the language of local states rq(m) sat-
isfying (r, m) Kqjp is in BPP, the only difference being that the BPP test
is required to run in time polynomial in JxJ and not Irq(m)I. We choose Jol
instead of Irq(m)J because it seems to be the preferred parameter in the con-
text of interactive proofs. Interactive protocols (P, V) and simulating Turing
machines Mv., for example, are both required to run in time polynomial in
I z, and not, say, in J la, Jl, and ItI. In all interactive proofs we are aware of,
however, the size Ir,(m)l of the verifier's local state is polynomial in IzI.

We can now make precise the intuition that an agent knows a fact only if
it can compute that it knows this fact. Given a system R, an agent q is said
to BPP-know go at a point c of R, denoted by c = KrPP~p, if

1. (r,m)I-KqWand

2. there is a BPP test for Kq~p in R.

6The probability, of course, is being taken over M's coin flips. We note that there
is nothing special about the value 2/3. We can use any value bounded above and away

or 12. In fact, tJ o repl.. , .val u h 1 - 2-I-1 by ising the standard
trick of running the original test M many times to estimate the probability with which M
accepts or rejects.
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Thus, a processor BPP-knows (p if it knows w and there is a BPP test it can
use to compute that it knows (p.

To get a better feeling for how this definition behaves, consider a system
in which an agent's local state includes two integer-valued variables m and
n (the value of these variables might be determined by the contents of the
input tape, for example), and suppose that for every pair of integers im and
i,, there is a run of the system in which the values of m and n are - and i,,,
respectively. Consider a point c at which m - (n- 1)2 (mod n). Since it is
very easy for an agent to check that m = (n - 1)2 (mod t), it is clear that
the agent BPP-knows the fact lb that 'm = (n- 1)2 (mod n)' aL the point c,
Notice that if m - (n - 1)2 (mod n), then m is a quadratic residue modulo
n (that is, a square modulo n). Since the agent BPP-knows that m - (n- 1)2

(mod n) at c, it is natural to assume that the agent must also BPP-know the
fact F that 'm is a quadratic residue modulo n' at c. But recall that in order
for the agent to BPP-know the fact 'm is a quadratic residue modulo n' at a
point, there must be a BPP test that determines whether m is a quadratic
residue for arbitrary m and n; and assuming quadratic residuosity is hard,
this is impossible. It follows that the agent does not BPP-know the fact 'm is
a quadratic residue modulo is' at c after all. Notice that the agent BPP-knows
the fact m - (n - 1)1 (mod n) at the point c, and since the implication
"if m =- (n - I)' (mod n), then m is a quadratic residue modulo n" is a
tautology, the agent clearly BPP-knows this fact as well (the simple test that
always accepts is a BPP-test for this fact). Consequently, this example shows
that, unlike the information theoretic definition of knowledge, it is possible
for an agent to BPP-know both facts b and lb D V without BPP-knowing
the fact F. The agent does know -b A p, but it need not know V itself. In
this sense, an agent no longer knows all consequences of its knowledge (that
is, everything that logically follows from the information recorded in its local
state). This is a result of the fact that this definition restricts an agent's
knowledge to what it can compute. The reader is referred to [Mos88] for an
interesting discussion of this and other properties of this definition.

A notion cf learning

The defiiition o~f BPP know~eui1rezt7 id -A n aent's kno"W-1cdg t wati

can compute by requiring the existence of a test the agent can use at all
points of a system to compute whether it knows a given fact. In this sense,
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BPP knowledge captures what an agent can compute on its own. Some-
times, however, it is possible for an agent to ob':in some extra information
(possibly from another agent in the system), and with this extra information
the agent is able to learn things it couldn't have computed on its own. This
informal notion of "learning" is of great importance to cryptography (and,
in particular, to zero knowledge proof systems). Unfortunately, it does not
seem possible to capture this notion of learning directly in terms of resource-
bounded knowledge.

To understand this situation more clearly, consider again the system in
which an agent's local state contains the two integer-valued variables m and
n, and consider again the fact V that 'm is a quadratic residue modulo n.'
As we have seen, it is impossible for an agent to BPP-know W since there
is no BPP test to determine whether m is a quadratic residue modulo n for
arbitrary m and n. There are, however, situations in which it does seem
to make sense to say that an agent knows W. One example is the special
case in which m = (n - 1)2 (mod n). A more interesting situation is one
in which an agent somehow obtains the factorization of n, and hence the
agent is easily able to compute whether V holds. There are a number of ways
in which the agent might obtain this factorization. The agent might find
the f-.i Iorization in one of the messages it has received from other agents in
the system (e.g., from the prover in an interactive proof system); or, more
generally, it might be able to deduce the factorization from the contents of
these messages rather than finding the factorization explicitly contained in
one of the messages. In either case it seems reasonable to say that, although
the agent cannot always determine whether V holds, in these cases it clearly
can, and hence can be said to know V. More generally, for any difficult to
compute fact, once an agent has seen a proof of the fact, it no longer seems to
make sense to say the agent does not kuow the fact (although it certainly did
not know the fact before seeing the proof). Since an agent cannot BPP-know
a fact like ', however, this notion of learning cannot be captured directly in
terms of resource-bounded knowledge.

Knowledge given facts

now, then, can one capture tlhis notion oflea.ining? We note that tbcr are "

number of ways of doing so, and at the end of this section we discuss several
alternatives to the method we propose. Our approach, however, is a very
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direct one. Recall the reason we felt resource-bo:nded knowledge could not
capture this intuition: some agent may fortuitously obtain some information
4, such as the factorization of an integer, that is enough for the agent to be
able to determine that it knows a fact V. Our idea is to define a notion of
BPP knowledge of (p relative to a fact j6. Roughly speaking, this means we
have a BPP test M that correctly determines whether q knows io when 4,
is true, but is not necessarily correct when 0 is false. However, we do not
want the results of this test to be completely arbitrary when 4 is false. In
particular, we want to be able to trust this test whenever it says that q knows

One way to capture this intuition is to make two requirements of the test
M: the first is that M be a sound test for KqW, meaning that Kq'p holds at
a point if M accepts with high probability at that point; the second is that
M be a complete test for KqV at all points satisfying 4,, meaning that M
will accept with high probability at such a point if KWt holds at that point.
These properties together guarantee that M is an accurate test for Kq'p at
points satisfying 4; and soundness guarantees that, regardless of the truth
of 7P, we can trust M when it says KqW is true.

To make this precise, we proceed as follows. We say that a test M is a
sound test for a fact t at a point c if c H -,t9 implies that M rejects at c
with probability at least 2/3. We write c F- sound(M, V) if M is a sound
test for t9 at c. Similarly, we say that M is a complete test for z at c if
c V implies that M accepts at c -with probability at least 2/3. We write
c - complete(M, t9) if M is a complete test for 0 at c.

We capture the intuition that M is a good test for Kq'p when 4 holds as
follows. Given a system R, a probabilistic algorithm M is said to be a BPP
test for KqV given 4 in R if, for -I1 points (r, m) of R,

1. M's input is q's local state rq(m),

2. M runs in timepolynomial in Ix ,h where x is the common input recorded
in rq(m),

3. M satisfies the following properties:

(a) M is a sound test for K.V on R: R 1= sound(M, K,,w).

(b) M is a complete test for K.Sp given ,: R [- 4 D complete(M, KqV).
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We remark that such a test is very similar to the solution of a promise
problem as defined in [ESY84]. A promise problem (A, B) is a partial de-
cision problem determined by two predicates, a promise A and a property
B. A Turing machine N solves (A, B) if, for every z satisfying the promise
A(z), the machine N halts on input z and accepts on input x iff x satisfies
the property B(z). So N is a partial decision procedure for the language
L = {z : B(z)}: it correctly determines whether o E L when the promise
A(z) is satisfied, but may behave arbitrarily when the promise A(z) is not
satisfied. Similarly, M is a decision procedure for Kqp when restricted to
points satisfying the "promise" 0, but may behave rather arbitrarily on the
remaining points. The difference between a solution to a promise problem
and such a test M is that M is required to be a sound test for KqV even
when 4' fails to hold.

We define knowledge of a fact S given 0 as follows. Given a system R,
we say that "q knows V given 4'" at a point c, ,lenoted by c j= KOW, iff

1. cr4',

2. c = K, and

3. there is a BPP test for KqW given 4' in R.

The last two conditions, as in the definition of BPP knowledge, require that
q actually knows W and that there exists a feasible test M for KqP that is
sound in general, and complete given 1b. The first condition says knowledge
given 4 holds only at points satisfying 4. Intuitively, these points are the
only points of interest since these are the only points where the promise 7k is
true, the only points where q has learned the information sufficient for q to
correctly determine whether it know (p. The fact that different tests M are
allowed to behave differently at points failing to satisfy 4 is anol er reason
we must require that KqW hold only at points satisfying 4': we want K.o
to be well-defined at all points, even points failing to satisfy 4' where the
required behavior of our tests M is only loosely specified.

To understand the relationship between this definition of knowledge and
resource-bounded knowledge, notice that if 4' is the fact true, then KO
Seqivalent to In this ense, knowledge given a fact ib is a direct

generalization of resource-bounded knowledge. Furthermore, notice that if
4' is testable in BPP given only agent q's local state as input, then K,'p is
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equivalent to KP ( p A ib). In general, however, we do not restrict the facts
,0 to be testable in BPP, and in this case it does not appear that knowledge
given 7k can be captured directly in ierms of BPP-knowledge.

To see how this notion of knowledge enables us to capture our intuition
concerning learning, let us return to our initial example in which an agent
q's local state includes two integer-valued variables m and n. Let V be the
fact that m is a quadratic residue modulo n, and let 0b be the fact that the
factorization of n is explicitly given in the messages on q's communication
tape. Let M be the test that accepts iff the factorization of n is explicitly
given in the messages on q's communication tape and m is a quadratic residue
modulo n. This test M for w is clearly sound and clearly complete given 7P.
Thus, when q learns from the factorization of n on its communication tape
that 'p is true, then q does indeed know 'p given 0b.

We note, however that while the intuition motivating the definition of
Kq is that V) is some additional information an agent might obtain that
will enable it to determine whether it knows W, the definition of K.'P is
more general than this. Suppose, for example, that 0 is the fact that the
prover in an interactive proof is the good prover. Intuitively, given that the
verifier is talking to the good prover, the veifier knows z V L when it rejects.
The fact 16, however, is a fact whose truth can never be determined given
only the verifier's local state, and hence does not represent some information
the verifier might somehow be able to learn, and therefore determine that it
knows x L. In this case, the right way to view ik is not as a fact the verifier
can learn, but as a condition or "promise" whose truth guarantees that the
verifier's test M accurately determines whether it knows 'p.

Finally, because the behavior of a test M is relatively unrestricted when
the condition 0 is false, and because an agent may not be able to determine
whether 1k is true or false, an important question is how an agent q is to
interpret the result of running the test M. What meaning should q assign
to the probability with which M accepts? Notice that M can accept either
with probability less than 1/3 or with probability greater than 1/3 (and,
in particular, with probability greater than 2/3). In the latter case, M's
soundness guarantees to q that Kq'p must hold, since M would accept with
probability less than 1/3 if Kq' did not hold. On the other hand, q's ability
to a'712 ThPr.. +h ,to M's 1ct-.at &... wit0 .2s.'s. M4./

U____ -.o---- ---- .o- P&- J.a LV. .L/ 0 .~J1U

on q's ability to determine whether o is true. If it can determine that 1b is
true, then it is guaranteed that "--Kq'p holds. Otherwise, the test M gives q
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no useful information about whether it does or does not know 'p.
This discussion illustrates the asymmetry of the definition of K 'p. In

particular, since the test M may say Kq'p does not hold when in fact it does
(this can happen at a point failing to satisfy 0), the tests associated with
Kq', feel more like tests for Kq'p than they do tests for -,KqV. It seems,
however, that positive tests about knowledge tend to be more important
that negative tests in the context of cryptography. In the case of zero knowl-
edge, for example, our intuition does not say that the verifier does not know
a fact ' at the end of a proof of x E L, but rather that if the verifier does
know ' at the end of a proof, then it also knows V at the beginning. No-
tice that proving a polynomial-time agent does not know a fact (say a fact
it knows in the information-theoretic sense) would probably involve proving
something about issues involving P versus NP. On the other hand, prov-
ing positive statements about a polynomial-time agent's knowledge involves
the construction of polynomial-time tests, which is typically a much more
tractable task. This probably explains the prevalence of positive statements
about knowledge in cryptography.

Practical Knowledge

The definition of practical knowledge itself, the ultimate objective of this
section, is obta.Aed as a result of the following observation: a probabilistic
test that fails on a negligible portion of its inputs is typically considered to
be just as good as one that never fails. Similarly, in the context of zero
knowledge, the fact that the distributions of (P(s),r*())(z) and Mv.(t,Z)
can be distinguished by a polynomial-time test with only negligible proba-
bility is considered to be just as good as if the two distributions cannot be
distinguished at all. The soundness and completeness conditions required by
the definition of knowledge given ,, however, do not allow for the possibility
that a given test M might fail to be sound or complete at a negligible frac-
tion of the points where we want it to be sound or complete. It is natural
to consider relaxing these conditions in some way. In order to do this, we
must first determine how we are going to go about measuring the size of the
set of points where the test M fails. Since the only distribution available
during probabilistic computation is the distribution on runs induced by the
coins tossed during the runs, it seems most natural to require that the test
behaves correctly at all points of all but a negligible fraction of the runs.
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Formally, let init be the fact holding only at points at the beginning of
a run (that is, at time 0 points). Given a system R, we say that M is a
practically sound test for V if for all k there exists a such that

R - inu D Pr(Osound(M, K p)) >_ 1 - a 101-k .

Similarly, given a fact 0&, we say M is a practically complete test for Kjp
given 4' if for all k there exists a such that

R J= init D Pr(O[', D complete(M, Kqp)]) _> 1 - a IXI-k.

Notice that, since we want to consider tests that behave correctly on all but a
small fraction of the runs, we have used the antecedent init in the definition of
practical soundness and practical completeness to ensure that the probability
is being taken over the runs of the system. These definitions are equivalent
to saying that for every initial global state of the system, the conditions
sound(M, Kqo) and 4b D completa(M, KqWp) hold at all points of almost all
runs extending this initial global state. That is, these conditions are state-
ments about prior probabilities. We could have considered instead tests with
the stronger property that they behave correctly at all but a small fraction
of the points extending any given global state (by deleting the antecedent
init). This latter notion can lead to dramatically different results (recall the
analysis of the probabilistic coordinated attack problem given in Chapter 4),
but does not seem appropriate for most computer science applications. In
particular, it does not seem appropriate in the context of interactive proofs:
at a point where the verifier has already accepted, it no longer makes sense
to expected the verifier to reject with high probability, even when z % L.

We now define "q practically knows o given ib" at a point c, which we
denote by c = K-fo, in precisely the same way as we defined "q knows io given
4'," except that the soundness and completeness conditions are replaced by
practical soundness and practical completeness. Formally, c [- kSo iff

1. cI ,

2. c H KqVo, and

3. there is a test M that is practically sound for KqSo and practically
complete for Kqf given 4'.
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The tilde in the notation KO'p is intended to denote the approximate nature
of the tests M guaranteed by the definition of practical knowledge. To say
that an agent practically knows ' given 4, therefore, means that the agent
knows p and has a test that quite accurately determines whether it knows
' at points satisfying 4', although on rare occasions (that is, in a negligible
f-action of the runs) it may make mistakes.

Alternate definitions

As we have mentioned, there are several alternatives to the definition of
practical knowledge. Before proceeding to show how practical knowledge can
be used to analyze interactive and zero knowledge proof systems, we discuss
several of these alternatives. The reader interested only in the application
of practical knowledge to interactive and zero knowledge proof systems can
safely skip ahead to the beginning of the next section.

Recall once again the intuition motivating the definition of practical
knowledge: as a result of learning the fact 4' that m - (n - 1)2 (mod n),
an agent can deduce that it knows the fact ' that m is a quadratic residue
modulo n. Notice that in this case the fact 0 is actually a proof of the fact Vp.
In general, knowing a proof of a fact ' is equivalent to knowing a stronger
fact 4' that implies 'p. Thus, since 4 is presumably easy to verify and 'p

is not, instead of talking about knowing Vp, we could talk about knowing 4'
(and hence W) instead. But this is not very satisfactory. Returning to our
quadratic residuosity example, what interests us is whether the agent knows
this fact ' that m is a quadratic residue modulo n, and not the particular
proof of ' the agent knows. We want to be able to describe protocols in terms
of knowledge, such as "if q knows Wp, then q should halt and accept." If all
we can talk about are the various proofs 4' of W, however, then we are forced
to describe this protocol indirectly with "if, for any proof ' of p, agent q
knows 4', then q should halt and accept." Such descriptions seem much less
desirable than the first.

To avoid this problem, one might be tempted to define a notion of learning
in which an agent learns 'p at a point if at this point it BPP-knows a fact 4'
that implies Vp, implicitly existentially quantifying over all possible proofs 4'
of '. Unfortunately, this notion of learning is not very useful to a resource-
bounded agent. It could be, for example, that at every point c the agent BPP-
knows a different fact 4b, implying ' (and hence has "learned" 'p everywhere)
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and yet is unable to determine at a particular point which fact ib it should
test for in order to determine that it knows 'p.

Another approach one might be tempted to take is to define a notion of
knowing 'p with respect to a particular test M where, informally, an agent
knows 'p with respect to M if using the test M the agent can aetern-ue
that it knows Wp. We remark that Fischer and Zuck define a similar notiou
of knowledge in [FZ87], but based on RP tests instead of BPP tests. No-
tice, however, that in some sense this idea is very similar to BPP-knowing
a particular proof 4' of V, since we can always take the proof V) to be the
fact that M accepts with high probability (and hence tells us that 'p holds).
This approach consequently shares the disadvantages discussed above. On
the other hand, instead of being forced to quantify over all possible proofs '
of 'p when describing protocols as we did above, we are now forced to quan-
tify over all proofs 0 and all tests M verifying such proofs, compounding our
original complaint. Most important, however, we want to be able to specify
and analyze protocols in terms of knowledge precisely because we want to be
able to abstract away the particular tests being used when we think about
computation. We note that the definition of resource-bounded knowledge
already existentially quantifies over such tests (so these tests do not appear
in the notation used), and we do not want to reintroduce them here.

The reader may still wonder about the asymmetry of our definition. Why
do we require soundness at all points, but completeness only at points satisfy-
ing 4'? Notice that if we strengthen the definition to require both soundness
and completeness at all points, then we have essentially returned to the defi-
nition of BPP knowledge. On the other hand, suppose we weaken the defini-
tion to require soundness only at points satisfying 4A. If 0 is easily testable,
then such a notion of knowledge may be of interest. As we have mentioned,
however, we want to be able to consider facts 0' that are not easily testable,
and in this context this weakening of our definition becomes rather uninter-
esting. For in contrast to our definition, q's ability to assign any meaning to
M's probability of acceptance would now depend on q's ability to determine
whether lb is true, which makes M of little use if testing for ik is hard. We
could instead have required completeness at all points and soundness only a
points satisfying 0, but this would change the flavor of M's behavior from
being primarily a test for Kq'o to being a test for -,Kqp, which (as we have
said) seems less relevant in the context of cryptography.

Finally, we note that in an earlier version of this work [HMT88] we defined
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knowledge with respect to sets of points A instead of defining knowledge with
respect to facts b. Intuitively, the set A consisted of the points in the system
(for example; the points satisfying some fact 'A) where an agent has obtained
enough information to be able to determine whether it knows a fact 'p. The
primary disadvantage of this way of defining knowledge is that the logic of
knowledge used to analyze a system is no longer independent of the system
being analyzed. It is no longer possible, for example, to argue that since the
formula w' D K.'p is valid in one system, it is valid in a second. Instead
we must argue that since a formula like W' D K'p is valid in one system, a
formula like W' D K BW is valid in a second for some set B of points related
to the set A in some way that must be explicitly specified. Introducing
such sets of points into our logic results in losing the abstraction from the
operational nature of the system being studied that motivated us to avoid
defining knowledge with respect to particular tests M in the first place.

5.4 Knowledge and Interactive Proofs

We now return to the study of knowledge and interactive proof systems. No-
tice that the cryptographic definition of an interactive proof system really
has nothing to do with knowledge or computational complexity. It is simply
a statement about probability. It is not surprising, therefore, that we can
immediately translate the statements of soundness and completeness in the
definition of an interactive proof system directly into our language of prob-
ability. Recall that init is the fact holding only at points at the beginning
of a run (that is, time 0 points), and let accept be the fact holding only at
points at which the verifier has accepted.

Proposition 5.1: An interactive protocol (P, V) is an interactive proof sys-
tem for a language L iff the following conditions are satisfied:

e Completeness: For every k > 1 there exists a > 1 such that

P x V 1 init D Pr[z E L Dc<accept] > 1 - k.

ounaness: For every - e - -- - > ...

' x V = init D Pr[<>accept D x E L] > 1 _ a IX-".
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The proof of Proposition 5.1 (and all other results in this chapter) can be
found in Appendix 5.A. The constant a used above is necessary due to the
fact that the probabilistic guarantees made by the definition of an interactive
proof system hold only for sufficiently large x. Notice that if 1 - a Ix1-k is
negative, then Pr( o) _ 1- a IaZ-k is equivalent to Pr(Wo) _> 0, which is valid
for every fact o. Consequently, by choosing a so that 1 - a ImI- k < 0 for
insufficieatly large x we obtain a formula holding for all x, and hence valid
at all points of the system. While this constant a does not appear in the
formal definition of an interactive proof system, an equivalent definition of
interactive proof systems can be formulated making use of such constants
just as we do in Proposition 5.1.

According to Proposition 5.1, a formula such as Pr[Z E L D K>accept]
1 - a Ie:-k holds at time 0 but not necessarily at later points. After the
verifier has rejected, for example, it is clearly not the case that with high
probability the verifier will eventually accept. In general, even before the
verifier has actually decided to accept or reject, a particularly bad sequence of
coin flips can significantly lower the verifier's chances of eventually accepting.
Consequently, the antecedent init is crucial in the formulas above. Intuitively,
this is due to the fact that the verifier's probability space is changing with
every step. Since we have chosen the assignment 7)t* as the basis for our
definition of probabilistic knowledge, an assignment associating with a point
the set of points having the same global state, an agent's probability space
decreases in size with every step. The same would often be true if we had
chosen any other consistent assignment such as Po, or VP'.

Since the facts appearing in Proposition 5.1 are valid, all agents know
these facts at all points. Furthermore, all agents know the fact init whenever
it holds. Since from Kqinit and K,(init D 4b) we can deduce Kqip, we can
immediately deduce the following corollary to Proposition 5.1.

Corollary 5.2: An interactive protocol (P, V) is an interactive proof system
for a language L iff the following conditions are satisfied:

* Completeness: For every k f 1 there exists a > 1 such that

P x V H init D E-1"zI- (z E L D *accept).

* Soundness: For every k > 1 there exists a > 1 such that

Px V I init D K"Ill-z (accept D x E L).
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This corollary says that (P, V) is complete if both the good prover and the
good verifier know with high probability that if x E L, then the good prover
will convince the good verifier to accept; and (P, V) is sound if the good
verifier knows with high probability that, no matter what protocol the prover
is running, if the verifier accepts z then x E L.

One important difference to notice between the two statements is that
completeness is stated with respect to the system P x V consisting of the
good prover and the good verifier, while soundness is statement with respect
to P x V consisting of arbitrary provers and the good verifier. In the a system
P* x V, the prover P* is fixed and hence the verifier knows which prover it
is talking to. In the system P x V, however, the verifier may consider any
prover possible, and hence cannot know the identity of the prover. In this
way we are able to capture quite simply the intuition that the verifier can be
confident that x E L whenever it accepts, regardless of which prover it has
been talking to.

A second observation worth making here is that if (P, V) is sound, then it
is actually the case that (in addition to the verifier) every prover also know..
with high probability that X E L whenever the verifier accepts; that is, we
could have replaced K - I3I-V by El -alml - k in the statement of soundness
above. We have chosen to formulate this statement in terms of the vcrifier's
knowledge since our intuition says that soundness is intended to be primarily
a guarantee to the verifier (just as zero knowledge is intended to be primarily
a guarantee to the prover).

While Corollary 5.2 shows that it is possible to characterize interactive
proof systems in terms of knowledge and probability, this characterization is a
reformulation of the original cryptographic definition in terms of very similar
concepts. It does not significantly clarify our intuition concerning interactive
proof systems, other than making explicit this distinction between what is
intended to be a guarautee to the prover and what is a guarantee to the
verifier. It does not capture, fur example, the intuition that at the end of an
interactive proof of f- E L with the good prover, the good verifier knows that
x E L despite its limnited computational power.

In what way can the verifier be said to know whether x E L at the
end of a proof of x E L? If our intuition is correct, the verifier knows
x E L whenever it accepts. Consider the test M that takes as its input the
verifier's local state and accepts at a point if the verifier has P.ccepted at that
point and rejects otherwise. Loosely speaking, the soundness condition for
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an interactive proof implies that M will not accept when x 0 L, and the
completeness condition implies that M will accept when x E L if M is run
at the end of a proof with the good prover. Let us denote by halted the fact
holding at a point iff at that point the verifier has either accepted, rejected,
or otherwise halted. We refer to a point satisfying halted as a final point. Let
us denote by 'p running P' the fact holding at a point iff at that point the
prover is following the protocol P. Let b be the fact halted A 'p running P'.
Intuitively, we would like to say that the good verifier knows x E L given lb
at the end of a proof of x E L with the good verifier. Of course, the test M is
not a sound test for x E L since on rare occasions the verifier may incorrectly
accept when x % L, and M is not complete given , for similar reasons. On
the other hand, it is practically sound and is practically complete given 'b. As
a consequence, we can prove the following.

Proposition 5.3: If (P, V) is an interactive proof system for L, then

P 'x V = (x E L A 'p running P') D Of ( E L),

where 0 ti halted A 'p running P'.

In fact, we can essentially prove a converse of this proposition as well,
which shows that we can characterize the notion of an interactive proof sys-
tem using practical knowledge.

Propositiou 5.4: If

P x V" = (z E L A 'p running P') D Okt(x E L),

where b 1-/ halted A 'p running P', then we can effectively modify V* to
obtain V such that (P, V) is an interactive proof system for L.

The protocol V is simply the protocol V* at the end of which the verifier
uses its test for practical knowledge of x E L to decide whether to accept or
reject.

These results tell us that an interactive proof system for L is precisely
W. AX fg ,,rtc that th verIL rl will practicay kaow x E L at the end
of a proof of x E L with the good prover, and will practically never be fooled
(by any prover). We remark that, having reformulated the cryptographic
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definition of an interactive proof system in terms of our logic of knowledge
and probability (recall Proposition 5.1), the proof of this new characteriza-
tion of interactive-proof systems has been done entirely by reasoning about
formulas in our logic of knowledge and probability. We consider this to be
quite important, since one of the major reasons for studying cryptography in
terms of knowledge is to be able to reason at a semantic level about crypto-
graphic systems without delving into the (often complex) operational nature
cryptographic definitions and computation.

5.5 Knowledge and Zero Knowledge

We now turn our attention to zero knowledge proof systems, and show how
to capture the intuition that if the verifier knows a fact o at the end of a
zero knowledge proof of x E L, then the verifier knows x E L D Vp at the
beginning of the proof as well. Since this intuition requires that (o be true
at the beginning of a proof whenever it is true at the end of a proof, it must
be a fact that depends only on the information contained in the initial state
and cannot be a fact like "the proof is over." Recall that, given a system
R,- a fact o is said to be a fact about the initial state if (r, m) - o implies
(r', i') H o for all points (r', M') in R with r(O) = r'(O). That is, (p is a
fact about the initial state if the truth of Vp at a point of a run depends only
on the run's initial state. Restricting our attention to facts about the initial
state is not much of a restriction in practice since we are typically concerned
that the prover will leak some information about the common input x to the
verifier, and any fact about x is in particular a fact about the initial state
(since x is encoded in the initial state).

The following theorem captures the intuition mentioned above. Roughly
speaking, it says that if x E L and the verifier has a nontrivial chance of
learning a fact o at the end of a proof of x E L, then the verifier can
already deduce Vp from x E L on its own at the beginning of the proof
without interacting with the prover. Consequently, provided x E L, the only
information that a prover leaks to the verifier in a zero knowledge proof of
x E L are facts that follow from x E L. In this sense, the verifier learns
esent-Ia!1- nothing as a reslt of the proof other than the fact z E L the
prover set out to prove. However, the proviso that M E L is crucial here.
There is nothing in the definition of a zero knowledge proof to stop the
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prover from leaking all sorts of information when x V L.

Theorem 5.5: Let (P, V) be a zero knowledge proof system for L, let V*
be an arbitrary verifier, and let V be a fact about the initial state. For every
fact b and constant k > I there is a fact 0' and a constant a > 1 such that

P V' F- (Z E LA init) D K lm [K E L D

The statement of this theorem is one of the major motivations for the
definition of practical knowledge. We want to capture the idea that if the
verifier is able to compute something on its own as a result of obtaining
some extra information (represented by the fact 0) from the prover during
the course of a proof, then the verifier is already able to compute this on its
own at the beginning of the proof. BPP-knowledge does not seem to let us
capture this intuition. We note, however, that the same result holds when
we replace practical knowledge given ip by BPP-knowledge given b, but this
strengthening of the hypothesis (that the verifier knows V given ib at the end
of the proof) weakens the statement of the theorem. Furthermore, the char-
acterization of interactive proof systems in terms of practical knowledge given
by Propositions 5.3 and 5.4 in Section 5.3.2 indicates thct practical knowl-
edge is of greater relevance to interactive proof protocols. Loosely speaking,
the fact -0' represents the condition that the current point is an initiai point
with x E L, and that from this initial point there is a nonnegligible chance
that kOcp will hold at the end of the run. The test for x E L D V that the
verifier uses at such points essentially runs the simulating Turing machine
repeatedly to generate local histories (since x E L, this simulation is guaran-
teed to be quite accurate), and runs the test for w at the end of each of these
histories. Since this test will succeed at the end of a nonnegligible fraction
of these histories, by generating enough of them the verifier is almost certain
to generate one such history, at which point it can accept.

Stepping back and looking at the statement of Theorem 5.5, however, we
see that the result is slightly unsatisfactory. The reason is that it is stated
in terms of the system P x V*, and in this system the verifier's protocol V*
is fixed and hence known to the prover. In contrast, the intuition behind
zero knowledge is that even though the prover does not know the identity of
the. verifier, & prover knows that th verifier learns no-hing at the end of
the proof other than x E L. In other words, our intuition suggcsts that the
statement of Theorem 5.5 should also hold in the system P x VP.
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Unfortunately, we cannot prove such a result. Given a test N for Kcp

at the end of a proof of x E L in the system P x V*, our proof of Theorem

5.5 constructed a test M for K,(z E L D w) at the beginning of the proof

by repeatedly running My. to generate runs of P x V* and running the test

N at the end of the generated run. In order to do the same thing in the

system P x V", because we require that our test M behave correctly at all

points of the system, M must first be able to determine the identity of the

simulating Turing machine My. given the identity of the verifier's protocol

V*. But since the order of quantification in the definition of zero knowledge

guarantees only that for every verifier V* there is a Turing machine Mv. (t, x)

approximating the distribution of (P(s), V*(t))(m), there is no guarantee that
there is a uniform way of choosing My.. This is a rather subtle point brought

out by our framework.
Since the source of this trouble seems to be the nonuniformity of Mv.,

a natural solution is simply to require that the simulating Turing machine

is indeed uniform in the verifier's protocol; that is, require that one Turing

machine M using V" as a subroutine can simulatethe runs of (P, V*) for every

verifier protocol V*. We remark that most known zero knowledge protocols

already have this property. This property is captured by the notion of black-

box zero knowledge. An interactive proof system (P, V) for L is said to

be strongly black-box zero knowledge (cf. [Ore87]) if there is a probabilistic

Turing machine M such that

1. M(V*, t, x) runs in expected time polynomial in Ix1, and

2. the families

{(P(s),'(t)(z) : (x,s,t) E Dom} and {Mv.(t,z): (x,a,t) E Dom}

are polynomialy indistinguishable, where (z, V*, a, t) E Dom iff x E L,

V* is a possible verifier protocol, a is a possible input for P, and t is a

possible input for V*.

If (P, V) is a strongly black-box zero knowledge proof system for L, then we

can prove the analog11e of Theorem 5.5 (with virtually the same proof) in

the system P x V" instead of P x V*:
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Theorem 5.6: Let (P, V) be a strongly black-box zeroknowledge proof sys-
tem for L, and let o be a fact about the initial state. For every fact ib and
constant k _> 1 there is a fact b' and a constant a > 1 such that

P x V"" [= (m E L A init) D .p ----,T D E L D

Unfortunately, as the name suggests, the notion of strongly black-box
zero knowledge is stronger than one might expect most protocols to satisfy.
The problem is that in practice M(V*, t, x) runs V* as a subroutine on input
x. Even if M runs V* only once, the running time of M is at least as great
as the running time of V*. Consequently, even if we restrict our attention
to polynomial-time V* as input to M, since the polynomial bound on the
running time of V* is different for every V*, the running time of M will not be
bounded by any single polynomial. Oren avoids this problem in his definition
of black-box zero knowledge by charging only one time step for a call to V'.
Thus, he is essentially viewing M as an oracle machine (rather than-a purely
polynomial-time Turing machine). We could modify our definitions to allow
for knowledge with respect to oracle machines, but a more natural solution is
to modify the measure we use of a test's complexity. In particular, suppose
we consider tests for facts that run at a point (r, m) in time polynomial
in xIj, the running time of V*, and the description of V*, where r is a run
with input x in which the verifier is running the protocol V*. Then, defining
a notion of practical knowledge with respect to such tests, the analogue of
Theorem 5.5 follows with kiecisely the same proof. We note that all zero
knowledge protocols we are aware of satisfy this notion of black-box zero
knowledge.

5.6 Generation and Zero Knowledge

In the previous section we formalized the idea that the verifier in a zero
knowledge proof learns essentially nothing but the fact the prover sets out
to prove. This is not, however, the strongest notion of security one could
hope for. It would also be desirable to show that, as a result of interacting
with the prover, the verifier cannot do anything that it could not do before
the interaction. As mentioned in the introduction, for example, there is a
big difference between knowing an integer n is composite and being able to
generate a factor of n.
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We abstract the idea of the verifier being able to do something as knowing
how to generate a V such that R(z, y), where R is simply a binary relation.
For example, if R(z, y) holds precisely when y is a prime factor of a number
z on the input tape, then being able to generate a y such that R(Z, y) means
being able to find a prime factor of z. Notice that, as in the case of factoring,
many natural relations R are testable in BPP given both z and y as input,
even though generating a y satisfying R(z, y) given only z as input may be
intractable. The assumption that a relation R is testable in BPP, therefore,
is generally not a severe restriction. Formally, a relation R is testable in
BPP if there is a probabilistic algorithm running in time polynomial in Izl,
accepting (X, !Y) with probability at least 2/3 if R(z, y), and rejecting (z, y)
with probability 2/3 if -iR(z, y).

Just as we have said that the verifier knows a fact W if it has an algorithm
to test for W, we would like to say that the verifier knows how to generate
a y satisfying R(x, y) if it has an algorithm to generate such a y. When
defining knowledge of facts, we have considered tests for facts V that were
sound and were correct given that a certain other fact 4' was true. Here,
although there are no conditions analogous to soundness and completeness,
we consider algorithms that do a "good job" of generating y's such that
R(z, y) at points satisfying 0, but may not perform as well at other points.
Given a system R, we say that a probabilistic algorithm M is a generator for
R given 0 for an agent q if for every point (r, m) of R

1. M takes as input q's local state 'rq(m) at (r, m),

2. M runs in time polynomial in Iz, where z is the common input recorded
in rq(m), and

3. if M outputs a string y then R(w, y) holds, and if (r, m) satisfies 0 then
M outputs such a string with probability at least 2/3.

This requirement that M never incorrectly outputs a string y failing to satisfy
R(z, y) is easy to enforce when R is testable in BPP.

Given a system R, we say that the verifier knows how to generate a y
satisfying R(x, y) given 4 at a point c, which we denote by c [- G! y. R(z, y),
1 .

1. cI=4, and
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2. there is a generator for R given b for v.

Before we continue, it is helpful to consider the relationship between this
definition of knowing how to generate and the definition of knowing a fact.
It is natural to suppose that knowing a fact can be characterized in terms
of knowing how to generate. aor example, suppose (p(z) is a fact about z,
and suppose R is the relation defined by R(m, 1) if (x) is true and R(z, 0)
if V(z) is false. Knowing how to generate a y such that R(x, y) given 0'
implies knowing ,(p) given 0. To see this, suppose N is a generator for R
given 0, and suppose M is the test for o(a.) that accepts at a point iff N
outputs 1, and rejects otherwise. M must be sound, since N never outputs
an incorrect string y, and hence N outputs 0 if it outputs anything at all
when (p(x) is false. On the other hand, M must be complete given 1k, since
at points satisfying 4 the generator N outputs 1 with probability 2/3 when
cp(x) is true, and hence M accepts with probability 2/3. But what about the
other direction? Does knowing W(z) given 3 imply knowing how to generate
a y satisfying R(x, y) given 4'? If R is testable in BPP, then an agent actually
knows how to generate a y satisfying R(m, y) given the fact true, and hence
also given the fact 4k. But if R is testable in BPP, then so is p(Pz) and
hence so is membersbip in the language L. For more interesting languages L,
namely languages not contained in BPP, it seems possible that an agent can
know V(x) given 0 without knowing how to generate a y satisfying R(z, y)
given 4. In other words, knowing the existence of a proof that X E L seems
to be different from knowing how to generate a proof that x E L. Intuitively,
the reason for this is that a BPP test M for knowledge of j(x) given 4k
is allowed to make mistakes, whereas a generator N for R(z, y,) given 46 is
not. For example, given such a test M, suppose we try to construct such
a test N in the obvious way by having N output 1 if M accepts and 0
otherwise. M can reject outright at any point not satisfying ' regardless of
whether V(z) is true, and at such points N incorrectly outputs 0. We note,
however, knowing how to generate is most interesting in contexts other than
language membership, contexts such as factorization sketched above, and in
these contexts the relations R are testable in BPP.

In any case, we can prove the following analogue to Theorem 5.5 (with
virtually the same proof):

Theorem 5.7: Let (P, V) be a zero knowledge proof system for L, let V*
be an arbitrary verifier, and let R(z,y1) be a relation testable in BPP. For
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every fact 4 and constant/k > 1 there is a fact 0' and a constant a > 1 such
that

P x V" = ~ E L A ini) D Kp'Qlz- O2VG Y.R(z, Y) D G''.~)y

Intuitively, this statement says that if the verifier has a nonnegligible chance
of being able to generate a y satisfying R(m, y) by talking to the prover, then
the verifier can generate such a y on its own. We note that this theorem
has a number of natural extensions. One simple extension is from generat-
ing y's satisfying relations R(z, y) to generating y's satisfying facts o about
the verifier's entire initial state. Another simple extension, along the lines
of practical knowledge, is a notion of practically knowing how to generate,
denoted by Gy.R(x, y), where the algorithm may on a small fraction of the
points satisfying 0 fail to generate y such that R(, y). A final extension,
using black-box zero knowledge, allows us to prove an analogous result in the
system P x VPP.

We note that the ability to test the relation R in BPP is crucial to the
proof of Theorem 5.7. Recall that in the proof of Theorem 5.5 the verifier
tests for the fact Wp by repeatedly generating runs and testing for Wp at the
end of each run. Since this test for Wp is sound, the verifier can accept as soon
as this test for Wp accepts. Here, however, since there is no notion analogous
to soundness, the verifier has no way of knowing which of the many y's it
generates satisfies R(x, y) and should be output unless the relation R(X, y)
can be tested in BPP. As we have said, however, most relations R of interest
are testable in BPP.

Finally, we note that our definition of knowing how to generate given 0 is
somewhat similar to the definition of probabilistic relative knowledge defined
in [FZ87]. The only significant difference is that they define knowing how
to generate relative to a particular Turning machine M, whereas we define
knowing how to generate relative to a fact 0b. Roughly speaking, taking ouM
to be the fact true at points where the test M outputs with probability 2/3 a
y satisfying R(z, y), knowing how to generate relative to M and knowing how
to generate given ibm coincide. The natural generalization of our definition to
practically knowing how to generate (where we allow the ,neruor to mk
mistakes, but only on a negligible fraction of the runs) differs in subtle ways,
however, from the generalization given by Fischer and Zuck.
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5.7 Resource-bounded provers

In an interactive proof system as defined in [GMR89], the prover is assumed
to be infinitely powerful. In practice, however, a prover is not infinitely
powerful and may have no more computational power than the verifier. For-
tunately, a probabilistic, polynomial-time prover with some "secret informa-
tion" on its work tape is able to carry out many of the interesting interactive
protocols. In the case of the graph isomorphism protocol from [GMW86] dis-
cussed in the introduction, for example, this secret information is an isomor-
phism between the graphs on the input tape. Since the context of such weak
(polynomial-time) provers is actually the context of most practical interest,
the type of security afforded by zero knowledge protocols in this context is
an important question, and the subject of our final section.

In order to study zero knowledge proofs in this context, we define the no-
tion of a weak interactive proof system, a direct modification-of the definition
of an interactive proof system for L. We define a weak interactive protocol
to be an interactive protocol (P, V) where both P and V run in probabilis-
tic, polynomial-time. We define a weak interactive proof system (P, V) for
a language L just as we defined an interactive proof system for L except
that we require (P, V) to be a weak interactive protocol and we restrict the
quantification of P* in the soundness condition to be only over probabilistic,
polynomial-time machines, rather than over all machines. As the following
lemma shows, however, weak interactive proofs of language membership are
not very interesting.

Lemma 5.8: There is a weak interactive proof system for L iff L is in BPP.

Thus, an interesting weak interactive proof cannot be simply a proof
of language membership; it must reveal something about the prover's local
state, and hence must reveal something about the prover's knowledge since
the prover's knowledge is determined by its local state. Consider again the
zero knowledge proof of graph isomorphism from [GMW86] discussed in the
introduction, or the zero knowledge proof of three-colorability also given in
[GMW86]. Both proofs can be carried out by a weak prover with the appro-
Driate information on its work tape, and in both cases the verifier obtains
some information about the prover's knowledge as well as about language
membership. In the case of graph isomorphism, the verifier learns that with
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high probability the prover can generate an isomorphism between the graphs
in question. Similarly, in the case of three-colorability, the verifier learns that
with high probability the prover can generate a three coloring of the graph in
question. It is well-known (see [HM84, MDH86]) that information about the
prover's knowledge can dramatically affect the verifier's knowledge about the
world. For example, in the case of three-colorability, information about the
prover's knowledge may indicate to the verifier that the prover has with high
probability communicated with the entity that generated the three-colorable
graph.

In order to study proofs of the prover's knowledge, we extend the defini-
tion of a weak interactive proof of language membership to that of a weak
interactive proof about the prover's initial state, where a fact is a fact about
the prover's initial state if it depends only on the prover's initial state as
defined in Chapter 2. Since the prover's initial state is determined by its
protocol Pt *, its initial work tape s, and the common input x, it is conve-
nient to think of these components as parameters and denote facts about
the prover's initial state by W(P*, z, a). The definition of a weak interactive
proof of W (*, z, s) is obtained simply by replacing all occurrences of X E L
by p(P*, z, s) in the definition of a weak interactive proof of language mem-
bership. Formally, we d'Aine a weak interactive proof system for a fact W
about the prover's initial state to be a weak interactive protocol (P, V) such
that

e Completeness: For every k and sufficiently large x, and for every s
and t, if W(P, x, s) then

pr[(P(s), V(t))(z) accepts] >_ 1 -Ix1.

e Soundness: For every k and sufficiently large x, for every probabilistic,
polynomial-time P*, and for every a and t, if -,V(P*, z, a) then

pr[(P*(s), V(t))(z) accepts] _ -k.

The reader may wonder why we consider weak interactive proofs of facts
about the prover's initial state that depend on the prover's protocol as well
as its work tape. To see why, suppose W(Z, s) is a fact about the prover's
work tape and the common input; that theis, It" h o Us," 01-jPnd onl
on the prover's work tape a and the common input z (and not on the prover's
protocol). Let us define dom(p) to be the set {z : (z, a) for some 9}.
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Lemma 5.9: A weak interactive protocol (P, V) is a weak intcractiveproof
system for a fact o about the prover's work tape-and the common input iff

1. for all sufficiently large z and for all a, we have Wo(z, a) iif z E dom(Sp);
and

2. dom(,o) is in BPP.

This lemma says that if there is a weak interactive proof of a fact R about
the prover's work tape and the common input, then R is essentially uninter-
esting. In particular, with the exception of a few small values of z, )o(z,a)
holds for all a whenever it holds for any a. Consequently, R is essentially
determined by dom(Wo). Since dom(vo) is in BPP, the prover can determine
whether R holds (for sufficiently large z) without even interacting with the
prover. Consequently, a fact R about the prover's initial state having only
nontrivial weak interactive proofs must necessarily be a fact depending on
the prover's protocol, and hence on the prover's entire initial state. Since the
prover's knowledge is determined by its local state, such a weak interactive
proof may be viewed as a proof of the prover's knowledge. In fact, we note
that even in the context of infinitely powerful provers an interactive proof of
* E L is not just a proof of x E L but a proof the prover knows z E L (i.e.,
a proof of the prover's knowledge). The fact that-all interesting interactive
proofs must be proofs of the prover's knowledge is obscured in the context
of infinitely powerful provers since z E L holds-if the prover knows z E L.
In the context of weak prover, however, these fact, -axe not equivalent.

We have defined a natural notion of interactive proof in the context of
weak provers, and we have shown that the only nontrivial interactive-proofs
in this context are proofs about the prover's knowledge. While our definition
is a direct modification of the definition in the case of strong provers, it
is not initially clear that our definition is the most appropriate (or at all
appropriate) in the context of weak provers, it is possible that our results
are merely artifacts of our definition. As evidence supporting our definition,
we now show that, under certain natural conditions, both interactive proof
systc=n involving weak provers that have appeared in the literature [FFS87,
TW7o] are instances of weak interactive proofs. Not surprisingly, in light
of our previous results, these proof systems concern proofs of the prover's
knowledge.'
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In [TW87] we find the following definition (modified slightly for the sake
of consistency with the rest of this chapter). Given a binary relation R, a
weak interactive protocol (P, V) is said to be an interactive proof that the
prover can generate some y satisfying R(z, y) if the following conditions axe
satisfied:

* Completeness: For every k > 1 and sufficiently large z and for every s
and t, if R(z, s), then

pr[(P(s), V(t))(z) accepts] _ 1 - Ii - k .

* Soundness: For every probabilistic, polynomial-time P" there is a prob-
abilistic Turing machine Mp. running in time polynomial in Izl such
that for every k > 1 and sufficiently large z and for all a and t,

pr[V accepts at (r,m) D R(z, Mp.(rp(m)))] _ 1 - I: - k

where the probability is taken over the runs r of (P*(s), V(t))(z) and
the coin flips of Mp..7

While we would like to show that every interactive proof that the prover
can generate some y satisfying R(z, y) is a weak interactive proof, this is not
quite true. To see this, notice that the definition of a weak interactive proof
requires that the probability with which (P(a), V(t))(:) accepts is very dose
to 0 when R(z, ) fais to hold, while an interactive proof of [TW87] allows
the probability with which (P(j), V(t))(:) accepts to be arbitrary as long as
the prover P is able to generate a V satisfying R(z, y). For example, if P is
able to generate a y satisfying R(z, y) with probability 1 at all points of the
system, then pr[V accepts at (r,m) D R(:, Mp.(rp(m)))] - 1 regardless of
the probability with which the verifier accepts. We will prove below, however,
that the following is a necessary and sufficient condition for an interactive
proof of [TW87] to be a weak interactive proof:

, Correctness: For every k > 1 and sufficiently large : and for every a
and t, if R(z, a) does not hold, then pr[(P(S), V(t))(:) accepts) < 10-k .

7We note that the soundness condition in [TW87] actually quantifies over all Turing
ma~hipex P' and not just over tsolynomial-time P*. This is done for technical complexity-
theoretic reasons. Since, however, the motivation for considering weak provers is that
in practice all agents are restricted to polynomial-time, our restriction does not seexi
unnatural.
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Intuitively, the good prover 'tries" to convince the verifier to accept only
when R(z, s) holds. It is easy to show that, given an interactive proof of
[TW871, this interactive proof can be modified to satisfy the correctness
condition ift R(z,yi) is testable in BPP: the modification simply has the
prover run the BPP test in order to determine whether is should attempt
to convince the verifier to accept. Since this seems to be the most relevant
context in practice (the relations used in the examples in [TW87] are testable
in BPP, and [FFS87 explicitly restricts to deterministic polynomial-time
relations8), this seems to imply that the correctness condition is a natural
restriction. In the following proposition we show that (P, V) is an interactive
proof of [TW87] for a relation R satisfying the correctness condition if it is
a weak interactive proof of the fact WpR defined by

jpR(F, z, ) 4I(P = P A R(z, a)) V
(P* # P A 'the soundness condition holds for P*')

Note that (a depends on the prover's protocol as well as the work tape, and
is a fact about th prover's initial state. Of course, W0R is not necessarily
testable in BPP.

Proposition 5.10: (P, V) is an interactive proof satisfying the correctness
condition that the prover can generate a y such that R(z, y) if (P, V) is a
weak interactive proof system for Sn.

We can show, in addition, that the proof systems of [FFS87] satisfying
the correctness condition above are also instances of a weak interactive proof
system. The following is an interpretation of the quite informal definition of
an interactive proof given in [FFS87]:

* Completeness: For every k > 1 and sufficiently large z and for every a
and t, if R(z, a), then

pr[(P(s), V(t))(w) accepts] _> 1 -I 1-"

s[51o89] shows that certain anomalies in the definition of an interactive proof in [FFS87]
disappear when the deterministic restriction is removed.



198 CHAPTER 5. KNOWLEDGE AND ZERO KNOWLEDGE

* Soundness: For every k _: 1 there exists a probabilistic-Turing machine
Mk such that for every P" and > 1 and -sufficiently-large z, and all a
and t,

pr[(P*, V) accepts] >_ Iml-k

implies
pr[R(z, M,(P-, x))] 1- j .

Here A4 is given the "code" for P*' and is allowed to run in time
polynomial in x, the running time of P*, and the length of the "code"
for P1W.

It is not hard to show that such an interactive proof is also an interactive
proof of a fact similar to 'ps. We leave the proof to the reader.

In light of the preceding propositions, our-definition of a weak interactive
proof system seems to be an appropriate definition; it can at least capture
the definitions of other proof systems defined in the context of polynomial-
time provers. We now turn to the study of the security afforded by such
protocols. Our definition of aweak interactive proof is a direct modification
of the definition of an interactive proof of language membership. We can
also directly modify the definition of a zero knowledge proof of language
membership to obtain a definition of a zero knowledge weak interactive proof:
a weak interactive proof (P, V) is said to be zero knowledge if for every V"
there exists a Turing machine Mv. such that the families

{(P(.O), V*(t))(z) : (P, ., V*, t, z) E Domn}

and
{Mv4(t,x): (P,a,V, t,x) E Dom}

are polynomially indistinguishable, where (P, 8, V*, t, x) E Dom iff V* is a
possible verifier protocol, a and t are possible work tapes, and w(P, ,).

Not surprisingly, analogues of all our previous results for interactive proofs
hold in the case of weak interactive proofs, with essentially the same proofs.
Rather than restating all the results here, we focus on one of them, the
analogue of Proposition, 5.1. If is a fact about the prover's initial state,
then we say (r;m) w -if ((P*,z,s), where P* is the protocol that p is
running in r, x is the common input in the initial state r(O), and s is the
contents of p's work tape in r(O).
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Proposition 5.11: A weak interactive }: ,ocol (P, V) is a weak interactive
proof system for a fact w about the prover's initial state iff the following
conditions are satisfied:

* Completeness: For every k there exists a such that

P x V init D Pr[jp D 0accept] >_ 1 - t Iml-,

* Soundness: For every k there exists a such that

?"X V - init D Pr[Oaccept D ( 1]a> - a I1 -k.

Thus, we have replaced the occurrences of z E L in Proposition 5.1 by P, and
used PP rather than P in the soundness condition since we are restricting
to weak provers.

At this point, we can make an interesting observation about the definition
of interactive proof systems. Notice that in our soundness condition, the
meaning of "sufficiently large z" (that is, the value of Nk) depends only
on the value of k and not on the choice of P*. In early versions of the
definition of an interactive proof given in [GMR89], it is not cleax whelher
the dependence is on k alone or on both k and P*. But as Shafi Goldwosser
pointed out to us, in the case of infinitely powerful provers, it doesn't matter
what choice we make. More formally, in the context of language recognition,
an interactive proof system (P, V) is sound with respect to one choice iff
it is sound with respect to the other. The proof of this observation is a
consequence of Feldman's proof technique for proving that it is sufficient
to assume the prover's computational powers are limited to PSPACE [Fell:
we can construct a cheating PSPACE prover that, at any point during a
conversation with the verifier V, can try all possible answers to the verifier's
latest question, compute which answer will cause the verifier to accept with
the greatest probability, and send this answer to the verifier.

In the case of weak provers, however, the order of quantification in the
statement of soundness is important. In particular, if we had stated our
tjoundness condition so that the choice of "sufficiently large z" might depend
on the protocol P*, all we would be able to prove is that for every k and
every protocol P, there exists a such that

P* x V in it D Pr[Oaccept D V]I --aH-.



200 CHAPTER 5. KNOWLEDGE AND ZERO KNOWLEDGE

Instead, we can prove that for every k there exists an a such that

×PP x V H init D Pr' accept D V -I _ - .1A .

The :frst statement says that, for every prover, as long as the verifier knows
the identity of the prover, W is true whenever the verifier accepts. The second
statement, on the other hand, says that no matter who the prover is, i is
t.ue whenever the verifier accepts, which is clearly the desired statement.
We remark that the weak interactive protocols resulting from t-. iuLcactive
proofs and zero knowledge proofs we are aware of satisfy te troier noilon
of ,oundness we have used in our definition, and the revised deffidikmn :,f ac'
interactive proof appearing in [GMR89] is consistent wit. 105. deliniiion w
use.

In addition to proving the analogues of results holdmit .n be ro.tf-cf. of
strong provers, we can reason about the interactive proofs 'f II' f[, TW8'7]
directly in terms of the notions of knowledge and generation wh 1a;e ,'_.Zined
in previous sections. For example, we can characterize proofs that the prover
can g.erate some y satisfying R(x, y) just as we characterized interactive
proofs, in the case that R(x, y) is testable in BPP.

Proposition 5.12: Given a relation R(z, y) testable in BPP, a weak inter-
active protocol (P, V) is a weak interactive proof that the prover can generate
some y satisfying R(, y) iff the following conditions are satisfied:

* Completeness: For every k there exists a such that

.P x V = init D Pr[R(z,s) D 0 accept] > 1. a I x

* Soundnese..: For every probabilistic, polynomial-time P*,

P" x V H accept D doy.R(x,y)

where 4' is the fact halted that the verifier has halted.

Notice that in the soundness condition, we have accept D 60y.R(m, y) rather
than Oaccept D ijty.R(xy). The first condition says that the prover can
generate some i such that R(- -;) at the point when the verifier accepts, as
required by [TW87], and not at the initial point as would be the case with
the second clause. This is one of the differences between the definitions of
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[TW871 and [FFS87]. A second difference between the two definitions is that
the soundness condition of [FFS87] is such that we can state the soundness
condition above in terms of the system 'P x V instead of P* x V. We
remark that because the machine M(P*, x) guaranteed by the definition of an
interactive proof in [FFS87] runs in time polynomial in J:1, the running time
of P*, and the length of the encoding of P*, we must modify the definition
of 6pyR(o, y) to say that the generating Turing machine also runs in these
parameters in order to reason about this definition of an interactive proof.
This modification is the same modification needed to reason about notions
of -ero knowledge other than strong black-box zero knowledge.

5.8 An Application

In preceding sections we have characterized interactive proof systems in terms
of knowledge. As an example of how to reason about interactive proof sys-
tems in terms of knowledge, we show how to prove the familiar result that
the sequential composition of an interactive proof of x E L followed by an
interactive proof of z' E L' is an interactive proof of (z, z') E L x L'.

For expository simplicity, we have been studying interactive protocols
(P, V) in isolation. However, as shown by the coin flipping example in the
introduction motivating interest in zero knowledge in the first place, inter-
active protocols are not used in isolation. They are intended to be used as
subroutines or building blocks in the construction of other protocols. Pro-
viding a general definition of what it means for one protocol to be used as a
subroutine in another protocol is a difficult problem. It is not too difficult,
however, to define the sequential composition of two protocols.

Loosely speaking, if P and Q are two protocols, their sequential compo-
sition P; Q should correspond to first running the protocol P until it halts
(if ever) and then running the protocol Q. Recall that a protocol is actually
a tuple of local protocols, one for each agent in the system, and that a local
protocol consists of state, message, and action protocols. We will define the
composition of two message protocols A and B. The composition of message
and action protocols is similar, and the composition of local protocols and
protocols will immediately folow.

We can assume without loss of generality that the domains dom(A) and
dom(B) of A and B (that is, the sets of local.states on which-the functions
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A and B are defined) are disjoint. Let halt(A) and start(B) be the halt
states of A and start states of B, respectively. The only real problem in the
definition of A; B is how the composition should move from a halt state of
A to a start state of B. In the case of inLeractive protocols, for example, it
seems most natural to require that the states of the communication tapes,
work tapes, and random tapes encoded in a local state remain the same,
and that the only thing that charges is that the state of the Turing machine
describing the prover or verifier's protocol changes from a halt state of the
first protocol to the start state of the second. This can be described by a
function f from halt(A) to start(B). The sequential composition A; B of A
and B, given f, is defined by

{ A(s, A) if s E dom(A) - halt(A)
A; B(s,,a) = f(s) ifs E halt(A)

I B(s, M-) if s E dom(B)

(Remember that a state protocol A maps a local state s and a vector M- of
messages received from other protocols to a local state A(s, u-).)

Having defined sequential composition, we now show that the sequential
composition of two interactive proofs is an interactive proof. Suppose (P1, V)
and (P 2, V2) are interactive proofs for L1 and L2 , respectively. Recall that
we assume the prover and verifier maintain on their work tapes a complete
history of the local states they pass through during the course of a run.
Notice that a trivial modification of these proof systems results in proofA A

systems for the languages L, = L, x E* and L 2 = E* x L2 , respectively,
where E = {0, 1}. Let us abuse notation and denote these new proof systems
by ( 1, V) and (P 2, V2) as well. Finally, let (P, Vr) = (P; P2, V; 2) be the
sequential composition of the two proof systems. We now sketch a proof that
(P, 1/) is an interactive proof system for L = L, x L2.

First, we note that it is easy to prove the following:

Claim 5.13:

P x (a E A 'p running P') D ,k(z E 1)

where 0 tJ halted A 'p running P'.

To see this, notice that since (P1, V) is an interactive proof for L 1, Proposi-
tion 5.3 says

"P x V1 I (z E L1 A 'p running Pi') D >K,'(x E 11)
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where jb ' halted A 'p running P1'. It is clear that any test M in ' x -V
for z E L, that is practically sound and practically complete given ib, can be
extended to a test M in 'P x ' that is sound and practically complete given
b: the test M simply searches its work tape for the most recent local state

in which the verifier was running V1, runs M in this state, and accepts iff M
accepts.

It is a bit harder to prove that

Claim 5.14:

'P x V1 (z E£2 A 'p running P) D Ck!(z E £2),

where i , V halted A 'p running P'.

To prove this, we observe that since ('2, V2) is an interactive proof for L 2,
Proposition 5.3 says

'P x V2 I-- (x~ EL2 A'p running P2') D OZkp(z E 2)

where0 2 V'd halted A 'p running P2'. We want to say that any test M in
P x V2 for z E L2 that is sound and complete given b2 can be extended
to a test k in P x ' for z E L2 . The test M is defined as follows. Since
f7 = V1; V2, it is easy to see that there is a natural mapping h mapping a
point c of 'P x V in which the verifier is running V2 to a point d of 'P x V2.
This mapping essentially discards that portion of a run of P x V up to the
point V2 is started, erasing everything on the- communication and random
tapes that is written before the beginning of V2, leaving the input and work
tapes unchanged. The test M rejects at a point if the verifier is still following
V1, and at all other points c runs the test M on the point h(c). The problem
is showing that k is practically sound and practically complete given b.

To do this, we have to relate the probability spaces used in P x V to
evaluate formulas like pr[(] > a to the probability spaces used in 'P x V2 .

It is easy to see that, extending h to sets in the-obvious way, h maps S,. to
Si,d (where d = h(c)) and measurable sets of Si,., to measurable sets of S,,

with the same measure. Furthermore, the fact X E L holds at c iff it does at
I,(C), and the test M accepts with the same probability at both c and h(c).
Consequently, the fact that init D pr[t] a is valid in P x V2, where (o is
of the form sound(M, K(z E L)), implies that init D O(pr [o] _ a) is valid
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in ? x f/, and hence that init D pr[ o] >_ a is valid in P x VP. Consequently,
the fact that M is practically sound in P x V2 implies that M is practically
sound in P x V, and similarly for practical completeness given 'b. This proves
Claim 5.14.

Given the two Claims 5.13 and 5.14, we know that the two formulas

(z E L1 A 'p running P') D OkO(C E L1)

and
(mE L2 A 'p running P) D OKe(x E L2)

are valid in P x V. Notice that z E L implies z E L1 and x E L2, and that,
since K?(x E LI) and K?(x E L2) are stable formulas (once they become
true they remain true), OKe(x E L1) A 0K?(x E L2) implies *K!(x E L1).
It follows that

Corollary 5.15:

P × V j (z E L A 'p running P') D O<k(x E L^),

where b ' = halted A 'p running P'.

Finally, by Proposition 5.4 we have

Proposition 5.16: The interactive protocol (P, f) can be effectively mod-
ified to obtain an interactive proof for the language L.

5.9 Conclusion

The main contribution of this work lies in suggesting notions of knowledge
appropriate for interactive proofs, characterizing interactive proofs in terms
of these notions, and proving, again in terms of these notions, that the prover
in a zero knowledge proof system does not leak any information other than
the fact it set out to prove. Roughly speaking, we have shown that a zero
knowledge proof system for z E L satisfies the following property, which we
call knowledge securij: the prover is guaranteed that. with high probability,
if the verifier will practically know a fact (p at the end of the proof, it prac-
tically knows z E L D (p at the start. We have also formalized the notion of
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knowing how to generate, and shown that zero knowledge proofs also satisfy
an analogous property of generation security. (The precise formulations of
knowledge and generation security are provided by the statements of Theo-
rems 5.5 and 5.7.) It is currently an open question whether either of these
notions of security characterizes zero knowledge (that is, say, whether an
interactive proof that satisfies the property of knowledge security is also a
zero knowledge proof). We can show, however, that, in the context of finite
state protocols, any protocol that satisfies the knowledge security property
is recognition zero knowledge, as defined in [DS88]. We consider the prob-
lem of characterizing zero knowledge in terms of knowledge instead of simply
stating necessary conditions for zero knowledge (knowledge and generation
security) to be an important problem.

We have sketched in Section 5.8 an example of how practical knowledge
can be used to reason about cryptographic protocols like interactive proof
systems. A second important problem left unsolved by this chapter is that
of developing more sophisticated tools for reasoning about practical knowl-
edge (and, for that matter, knowing how to generate) that will be needed
in order to be able to prove more sophisticated results about cryptography
in terms of knowledge. In Chapter 3 we were able to use fairly powerful
proof rules like the induction rule to reason about information-theoretic def-
initions of knowledge, a rule that is essentially the translation of theorems
from recursion theory into statements about knowledge. In the case of prob-
abilistic knowledge, it is possible to translate many results theorems about
measure theory into proof rules for probabilistic knowledge (see [FH88] for
a number of examples). But because the definition of practical knowledge
depends on Turing machines, powerful proof rules for reasoning about prac-
tical knowledge are going to require general results about computation and
computational complexity. Some simple proof rules such as "From KO1fpo
and K 2 2 infer K 1A 2(jp A o2)" are quite easy to prove valid. But we
have seen in Section 5.3.2 and the work of [Mos88] that proof rules such as
"From Ko and KO((o D (o') infer K.O" are not necessarily valid. Un-
der what conditions are such rules valid? It is not clear at the moment
how different reasoning about such conditions and using the resulting proof
rules will be from making such inferences by reasoning directly in terms of
the operational, cryptographic definitions in the first place. Moreover, we
want to be able to reason about interactive protocols in isolation, and use
these results to reason about protocols making use of interactive protocols
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as subroutines. This means that we want to be able to prove that certain
statements about knowledge are valid in a system corresponding to running
an interactive protocol in isolation, and prove that these same statements are
true in another system at all points at which the interactive proof is being
run as a subroutine. But we do not seem to have at the moment very so-
phisticated techniques for translating statements about knowledge from one
system to another, although the mapping h used in Section 5.8 and the re-
lated notions of implementation defined by Halpern and Fagin in [HF85] and
elaborated by Mazer in [Maz89] are a good initial step toward this goal.

Nonetheless, we feel that these security results shed some light on the type
of security that zero knowledge proofs provide. Our theorems provide support
for the definitions of interactive proofs and zero knowledge and our model
provides a good semantic setting for such an analysis. Some of the definitions,
chiefly that of practical knowledge, are quite subtle. Many straightforward
definitions one may try fail by being inappropriate for the cryptographic set-
ting and not providing a useful sense in which zero knowledge proof systems
provide security. As Feige, Fiat, and Shamir write in [FFS87], "the notion of
'knowledge' is very fuzzy, and a priori it is not clear what proofs of knowl-
edge actually prove." We hope to have established a framework within which
such questions can now be answered.

5.A Proofs of results

We end this chapter with an appendix in which we prove most of the results
claimed in this chapter. As stated in the text, the proofs of the remain-
ing results either follow immediately from preceding results, or are virtually
identical to the proofs of the preceding results.

Proposition 5.1: An interactive protocol (P, V) is an interactive proof sys-
tem for a language L if the following conditions are satisfied:

e Completeness: For every k > 1 there exists a >_ 1 such that

P x V H init D Pr[z E L D *accept] 1- ai,

. 5ou,,dness: For every h > 1 there e-s.- _ >_ such that

? x V = init D Pr[Oaccept D x E L] _ 1 - a IzI-h .
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Proof: First, given an interactive proof system (P, V) for a- language L, we
prove that the two conditions above are satisfied. Fix k 1, let N, 1 be
the constant guaranteed by the definition of an interactive proof system, and
take = (Nk)"; notice that 1 - a zl - k < 0 when 1:1 < Nh.

We first prove that the completeness condition is satisfied. It is enough to
show that for any initial point c of P x V, the point c satisfies the formula 01
defined by Pr[z E L D *accept] 2 1 - a Iol- . Fix one such point c. Notice
that fixing c implies fixing an initial global state, and hence fixing values for
z, a, and t. If z V L, then all points with c's global state satisfy the formula
z E L D 0accept, and hence c satisfies 1b1. Suppose z E L. If Iml < Nk, then
by the choice of a we have 1 - a Iz:- k - 0, and c trivially satisfies tbi. If
Iz_ 2 Nk, then by the completeness conch "-n for interactive proof systems
we have that the verifier accepts in 1 - 1. 1- ' > 1 - a I:!- k of the runs of
(P(s), V(t))(x); in other words, Oaccept holds at 1 - a II - k of the points
with c's global state, and c satisfies b1.

We now show the soundness condition is satisfied: Again, it is enough to
show that for any initial point c of P x V, the point c satisfies the formula
'b2 defined by Pr[Oaccept D z E L] _ 1 - a II - k . Fix one such point c.
Again, notice that fixing c implies fixing an initial global state, and hence
fixing values for P*, z, a, and t. If z E L, then all points with c's global
state satisfy the formula *accept D z E L, and hence c satisfies b2. Suppose
z L. If IxI < Nh, then by the choice of a we have 1 - a Ix I < 0, and c
trivially satisfies 0b2. If Iz >_ Nk, by the soundness condition for interactive
proof systems it follows that the verifier accepts in at most j:l- ) of the runs
of P* and V on input x with work tapes a and t. This means that at least
1 - IXI- k > 1 - a 101- k of the points with c's global state fail to satisfy
Oaccept, and hence must satisfy *accept D z E L. It follows that c satisfies
0b2

Conversely, given (P, V) satisfying the two conditions above, we prove
(P, V) is an interactive proof system for L. Fix k _: 1, let a > 1 be the
constant guaranteed by the two conditions above for 2k, and take Nk 1 to
be large enough that a < (Nk)"; notice that a < 1z:1 when IzI L Nk.

We first show the completeness condition for an interactive proof system
is satisfied. Consider any z, a, and t satisfying z E L and IzI 2! Nk. The

com- een- G o 'o a'-o--v ar-es in p-icular, tbLI. f
. ...e. . ",I Mai' we VefilLei c-
cepts in at least 1 - a I:I2 of the runs of P and V on input z with work
tapes a and t. Since the choice of a guarantees 1 - a IMI- h _ 1 - ol -', we
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have Pr[(P(s), V(t))(m) accepts] > 1 -
We now prove the soundness condition for an interactive proof system is

satisfied. Consider any P', x, ., and t satisfying x g L and Iml > Nk. Since
x L, the soundness condition above guarantees that the verifier fails to
accept in at least 1-a ImI- "' of the runs with P* and V on input x with work
tapes s and t, which means the verifier accepts in at most a I:V2k < [x - '
runs, so Pr[(P'(s), V(t))(m) accepts] < Iml-: .

Proposition 5.3: If (P, V) is an interactive proof system for L, then

' x V H (x E L A 'p running P') D Oke(x E L),

where 0' ' halted A 'p running P'.

Proof: Let M be the test that accepts at a point if the verifier has accepted
at that point, and rejects otherwise. Suppose we can show that M is practi-
cally sound for K.(x E L), and practically complete for K,(x E L) given 4'.
Then we can complete the proof of this proposition as follows. Consider any
point (r, k) of P x V satisfying x E LA 'p running P', and consider any final
point (r, k') of r with k' > k. Notice that (r, k') 1 4' and (r, k) = K.(z E L).
Since M is a test for K,,(x E L) that is sound and is complete given 0, we
have (r, k') H k?(m E L), and hence (r, k) J= C>k(z E L). It follows that

P X V 1= (: E L A 'p running P') D C.k'(x E L),

as desired. Thus, all we need to prove is that M is practically sound for
K (x E L), and practically complete for K (z E L) given 7P. Since K,(m E L)
is equivalent to x E L, it is enough to prove that M is practically sound for
z E L, and practically complete for x E L given 4'.

To see that M is practically sound for : E L, fix k > 1 and take a > 1
to be the constant guaranteed by Proposition 5.1 to satisfy

1' x V I init D Pr[<accept D x E L] > 1 - a il - ' .

Notice that the formula <>accept D x E L implies x V L D -,accept, which
in turn implies sound(M, x E L). Since <accept D x E L is a fact about the
run, <>accept D x E L implies O((>accept D x E L), which in turn implies
Osoud(M, z G L). It follows that

P x V 1 init D Pr[Osound(M,z x L)] > 1 - a z - k,



5.A. PROOFS OF RESULTS 209

and hence M is sound for x E L.
To see that M is practically complete for x E L- given b, fix k > 1 and

take a > 1 be the constant guaranteed by Proposition 5.1 to satisfy

P x V init D Pr[zE L D *accept] >_ I - - '.

Notice that the formula z E L D Kaccept implies b D (z E L D (16 A
<>accept)). Since the formula b A *>accept is equivalent to accept (the ver-
ifier has already accepted or rejected at points satisfying jb, namely final
points), and since z E L D accept implies complete(Mz E L), we have
,0 D complete(M, z E L). Finally, since z E L D *>accept is a fact about
the run, z E L D <>accept implies 3[z E L D <>accept], which implies
0[0 D complete(M, X E L)]. It follows that

P x V = init D Pr[O[, D complete(M, x E L)]] 1 - a JzJ-k.

But we want to prove that "#his formula is valid in the system P x V, and
not P x V. Since a point of P x V satisfying ib is a point of P x V (recall
that b D 'p running P'), we have

P x V = init D Pr[O[b D complete(M, z E L)]] 1 - a ,lI-k,

as desired, and hence M is complete for z E L given b. El

Proposition 5.4: If

P x V = (z E L A 'p running P') D <>kt(, E L),

where 16 _. halted A 'p running P', then we can effectively modify V* to
obtain V such that (P, V) is an interactive proof system for L.

Proof: Let M be a test for K,(x E L), and hence for z E L, that is practi-
cally sound, and practically complete given 0b. Such a test M is guaranteed
to exist by the definition of practical knowledge given ib. We assume without
loss of generality that M accepts with probabilities 2-fil and 1 - 2-121 instead
of 1/3 and 2/3.' Let V be the protocol in which the verifier (i) runs the

, ,.l ttlflkoi a tes M accepting with proba'mties V3 and 2/3 into a test

M' accepting with probabilities 2-111 and 1 - 2-I 11 by using the standard trick of running
the test M many times to estimate the probability with which M accepts or rejects.
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protocol V*, (ii) runs the test M once V* halts, and (iii) accepts if M ac-
cepts. We now show that (P, V) satisfies the soundness and completeness of
Proposition 5.1, and hence must be an interactive proof system for L. Given
a run r of P x V and a run r* of P x V*, we say that r and r* are corre-
sponding runs if the two runs have the same initial state, and the sequences
of coins flipped in the two runs are the same. We say that (r, k) and (r*, k)
are corresponding points.

We first prove that (P, V) satisfies the soundness condition

P x V init D Pr[Oaccept D z E L] > i- a Iml- .

of Proposition 5.1. Since M is practically sound for x E L in P x V*, we
have

'P x V* =i nit D Pr(Osound(M, x E L)) > 1 - all -".

Recall that sound(M, x E L) holds at a point if at that point z V. L implies
pr[M rejects] 1 I-2 -IM. Remember that the probability here is being taken
over M's coin flips (and not over runs), and that this condition is a fact about
the global state (even a fact about the verifier's local state, the input to the
test M). If we take this condition as a primitive proposition in our language,
then sound(M, x E L) is equivalent to the formula x 0 L D pr [M rejects] >
1 - 2-121. It follows that

Osound(M, z E L)

implies
O(x V L D pr[M rejects] _ 1 - 2-181).

We claim that, given corresponding runs r and r* of P x V and P x V*,
if the initial point (r*, 0) satisfies OJsound(M, x E L) and hence satisfies

O(z V L D pr[M rejects] 1 1 - 2-1'1),

then the initial point (r, 0) satisfies

x L D O(Pr['reject] > 1 - 2-1-1).

To see this, let I be the time at which the verifier has finished the protocol
V* in r and r* and starts the test M in r. If (r*,0) x z € L, then (r*,t)
pr[M rejects] > 1 - 2- I1 . Consequently, if (r,0) x z € L, then (r,t)
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Pr [*reject] > 1 - 2-1--. (Remember that the probability is being taken over
M's coin flips at (r*, 1) and over runs at (r, 1)) It follows that (1, 0) satisfies
the formula x V L D O(Pr['reject] > 1 - 2-111), as desired.

Now let (r, 0) be any initial point of P x V, and let (r*, 0) be the corre-
sponding initial point of P x V*. Since the soundness of M guarantees that
the initial point (r*, 0) must satisfy the formula Pr[isound(M, z E L))] Z!
1 - a JzJ- k, the preceding argument shows that the initial point (r, 0) must
satisfy the formula

P,[x 0 L D (>(Pr[Orejct] > 1 - 2-1-0))> 1 - a! l- ".

It follows that (r, 0) satisfies

Pr[z L D Kreject] (1 - 2-101)(1 - a

which Implies

Pr[Oaccept D x E L] (I - 2-'I)(1 - a IaL-).

Since

(1 - 2-I'I)(1-ax -k) _> 1 - I L- -2 -

for some/3 1 1, it follows that (r, 0) satisfies

Pr[Occept D x E L] I -1 JzJ2 {k

for some -y> 1. Thus, (P, V) satisfies the soundness condition.
We now prove that (P, V) satisfies the completeness condition

P x V - init D Pr[z E L D *accept) _ 1 - ac -t Jx

of Proposition 5.1. Since M is complete for x E L given j6 in P x V', we
have

P x init D Pr[O(J6 D complete(M, x E L))] > 1 - a - '.
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As above, taking pr[M accepts] > 1 - 2-111 as a primitive proposition in
our language, the condition complete(M, x E L) is equivalent to the formula
z E L D priM accepts].> 1 - 2-11. It follows that

O(o D complete(M, x E L))

implies
0(0~ D (a, E L D pr[M accepts) 1 - 2-181))

which implies

x E L D O(b D pr[M accepts] > 1 - 2-'l)

since x E L is a fact about the run.
We claim that, given corresponding runs r and r" of P x V and P x V*,

if the initial point (r*, 0) satisfies O(3b D complete(M, z E L)) and hence
satisfies

x E L D O(' D pr[M accepts] > 1 - 2-1-1),

then the initial point (r, 0) satisfies

z E L D <>(Pr[C'accept] > 1 - 2-IN.).

To see this, let I be the time at which the verifier has finished the protocol
V* in r and r* and starts the test M in r. If (r*,0) H x E L, then (r*,I) H
pr[M accepts] > 1 - 2-111 since (r.*,I) H O. Consequently, if (r,0) H x E L,
then (r, 1) H Pr[Oaccept] >_ 1 - 2-11, and hence (r, 0) satisfies the formula
z E L D O(Pr[Oaccept] > 1 - 2-1-1).

Now let (r, 0) be any initial point of P x V, and let (r', 0) be the cor-
responding initial point of P x V*. Since the completeness of M given
guarantees that the initial point (r*, 0) must satisfy the formula

Pr[O(0 D complete(M, z E L))] _ 1 - a lzl-",

the preceding argument shows that the initial point (r, 0) must satisfy

Pr[z E L D O(Pr[Oaccept] > 1 - 2-I'!)] > 1 - a ll- .

it follows that (r, 0) satisfies

Pr[ E L D 'Oaccept] _ (1 - 2-1"l)(1 a IaV'),
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and hence
Pr[x E L D *accept] _ 1 - .-

for some 7 -: 1 as above. Thus, (P, V) satisfies th, ompleteness condition.
01

Theorem 5.5: Let (P, V) be a zero knowledge proof system for L, let Va
be an arbitrary verifier, and let (p be a fact about the initial state. '?or every
fact 16 and constant k >_ 1 there is a fact 16' and a constant a > 1 such that

P x V 1= (z E L A init) D Kp1a*uI&K[kffo D E L D ,-)].

Proof: Given a fact 4, and a constant k, we construct a fact ik' and constant
a satisfying the formula above.

Notice that we can assume k!o holds at some point of P x V* (the
theorem is trivially true if it does not), and hence the existence of a test
M for KW that is practically sound and is practically complete given 16.
Without loss of generality we can assume two things about this test. First,
we can assume that M accepts with probabilities 2-121 or 1 - 2-11 instead of
1/3 or 2/3. Second, since we assume that the verifier's local state encodes
the verifier's local history, and since (p is a fact about the initial state, if K ,so
holds at any point of a proof then it holds at the end of the proof as well.
Consequently, since the verifier's local state does encode the verifier's history,
we can assume that M accepts with probability 2/3 at the end of a proof if it
does so at any point in the middle of the proof. Neither assumption affects -the
fact that M is practically sound for Kso, and practically complete for K.V
given i. Given the constant k fixed above, let a3k be the constant guaranteed
for 3k by the definition of the practical soundness and completeness of M.

We can also assume the existence of a Turing machine Mv.(t, z) that ap-
proximates the distribution of local histories generated by (P(s),V*(t))(x).
In particular, the following modification Mh of the test M is able to dis-
tinguish these distributions with only negligible probability. Notice that the
input to M is the verifier's local state. We can modify M to obtain a test Mh
that accepts as input the verifier's local history and runs the test M at the
fina: local state in the local history, accepting iff the test M accepts. Since
the length of the interactive proof is bounded by some polynomial in IxI, we
can guamanteadLit, Avrh still runs in time polynomial in I'z on arbitrary inputs
by having it reject outright when presented with a history that is too long.

Consider now the test T' defined as follows:
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T'(t, x): accepted := false
repeat 6 IJlk times

run Mv.(t, x) to generate a local history H

if Mh accepts H then
accepted := true

end repeat;
if accepted then accept else reject.

In a few moments we will prove that T' is a test for K,(z E L D w) that, for
some constant X, is sound at all points with I1i _ X, and is complete at all
points with JIx > X that satisfy

._t. A x E L A Pr[Oktio] > 1 -k .

In fact, we will show that T' accepts with probability 2/3 at all points with
IzI _ X that satisfy -. Taking 0,' to be the fact holding at points satisfying
lz] _ X and 0_, and taking T to be the test obtained by modifying T' to
reject outright if IxI < X, it will follow that T is a test for K.(x E L D s)
that is sound and is complete given 0'. In fact, T will accept with probability
2/3 at all points satisfying 0'.

Given such a test T, the rest of the proof is completed as -follows. Take
a = X k so that 1 - a Jz1-k _ 0 when JzJ < X. Consider an initial point c
satisfying x E L. If-c satisfies Pr<[0kt!1 < W-k, then c trivially satisfies
Pr[oK'so D !t'(x E L D W)] _> 1 - [m[-. If c:satisfies [:1 < X, then 1 -
alJ -  < 0, and c trivially satisfies Pr[OKo D K E ( E L D so)] _ 1 -
a IMI-k . So suppose c satisfies Pr[K W] > Jzl k and IJI X. Notice that
c satisfies ar', and hence that T accepts with probability 2/3 at c. Since T is
sound for K.(z E L D o), it follows that c satisfies X.(z E L D- -), and hence
that c satisfies Pr[OKtW D -('zE L D p)] = 1. Consequently, all initial
points c with x E L satisfy Pr[OktV D K?'(-EL D o)] > 1t- a IJ - 'k, and
hence satisfy K.-aIz-1k[O kt D Kt'(z E L D s)] as desired.

It remains only to prove that, for some constant X, the test T' is sound
at points with IxI > X and is complete at points with 1:1 I_ X satisfying ,o.

We first prove that T' is sound at all points with sufficiently large x: given
a point c of P x V* satisfying -K,( E L D So) with sufficiently large x, we
prove i at. I r-...., .,, h pro ta tI 2/33 at c.

Since c satisfies -iK,(x E L D W), some point d of 7 x V with c -,, d
satisfies - (z E L D w). Since T' takes as input only x and t found in the v's
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local state, which is the same at both c and c, the test T' must reject with
the same probability at both points. Without loss of generality, therefore,
we can assume c satisfies -(x E L D (p), or equivalently that c satisfies : E L
but not o.

T' rejects at c iff, on each iteration, Mh rejects a history generated by
MV.. What is the probability that Mh rejects a history generated by Mv.?
Suppose the point c fixed above is the initial point of a run of (P(s), V*(t))(x).
Since (P, V) is a zero-knowledge proof system, we know that, for sufficiently
large x, the probability Mh rejects a history generated by Mv.(t, x) is within
IMI-2k of the probability Mh rejects a history generated by (P(s),V(t))(:).
But this latter probability is just the probability the original test M rejects
at the end of a run of (P(a), V'(t))(m). Since c satisfies -,V, and since (P
is a fact about the initial state, we know that -,V, and hence -'Ko, holds
at all points of every run of (P(s), V*(t))(m). Since M is practically sound
for K,,W, we know that, for sufficiently large x, the test M rejects with
probability at least 1 - 2-121 at the end of at least 1 - a3k Iz - 3k _ 1 - IZ- k

of the runs of (P(s), V*(t))(x). Consequently, the probability Mh rejects a
history generated by My.(t, z), and hence the probability a given iteration
of T' rejects at c, is at least

(1 - 2 -I)( 1 - IXV2h)- J_ x2k > 1 - 2 IMI 2 k - 2-1-1

> 1 - I1 k 2 +2Il_

> l-3I[Z - 2k

for sufficiently large z; and hence the probability T' rejects at c (that is, that
all 6 xIzk iterations of T' reject) is at least (1 - 3 IZ- 2k)sfrIkX, which goes to 1
as IzI goes to infinity. It follows that T' rejects with probability 2/3 at c for
sufficiently large z.

We now prove that T' is complete at all points satisfying IM . with suffi-
ciently large z: given a point c of P x V* satisfying 0' b with sufficiently large
z, we prove that T' accepts with probability 2/3 at c.

First consider the probability a given iteration of T' accepts at c. Suppose
the given point c is an initial point of a run of (P(s), V*(t))(z). Since (P, V)
is a zero-knowledge proof system, we know that, for sufficiently large X, Ove
probability Mh accepts a history generated by Mv.(t, z) is within IzI- 1k of
the probability Mh accepts a history generated by (P(s),_.'(t))(z), which is
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precisely the probability the original test M accepts at the end of a run of
(P(s), V*(t))(x). Since c satisfies 0', c satisfies Pr[<k>] >_ J 1-k . This
means that at least Im1- k of the runs of (P(s), V*(t))(m) pass through a point
satisfying 0b and K, and that M accepts with probability at least 2/3 at
such points in at least 1 - a3k IM[-3k > 1 -: 1zJ-k of these runs. Since we
assume M accepts with probability 2/3 at the end of a run if it does so in
the middle of a run, the same is true at the end of these runs. This means
one iteration of T' accepts with probability at least

2 Hk-, (1 _ IXI-k) _ IXIV 2k > 12:1-1 (2 _ 2

It follows that a given iteration of T' rejects with probability at most 1 -
IXI-k /3, that all iterations of T' reject (in which case T' itself rejects) with
probability at most (1 - JxJ-k /3)1W1k, and hence that T' accepts with prob-
ability at least

/ 1/3 1/3)6 >2L_ i-: i1k - -(e-/)s>

for sufficiently large x. (Here we are using the fact that (1 + c/n)n tends to
ec as n tends to infinity.) It follows that T' accepts with probability 2/3 at
c satisfying i with sufficiently large x. El

Lemma 5.8: There is a weak interactive proof system for L iff L is in BPP.

Proof: Suppose (P, V) is a weak interactive proof for L. Consider the
Turing machine M that on input x simulates (P, V)(x) with empty work
tapes. Notice that since both P and V run in polynomial time, so does the
Turing machine M. By the definition of a (weak) interactive proof system,
if x E L and x is sufficiently large, then (P, V)(x) and hence M(x) accepts
with probability 2/3; and if x V L and x is sufficiently large, then (P, V)(M)
and hence M(m) rejects with probability 2/3. Since we can hardwire into M
whether M should accept or reject x for the finite number of insufficiently
large x's, we can assume M is a BPP Turing machine, and hence that L is
in BPP.
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Conversely, suppose L is in BPP. Let M be a BPP Turing machine for L,
and let (P, V) be the interactive protocol defined as follows: on input Z, the
prover's protocol P does nothing, and the verifier's protocol V runs M(m) and
accepts iff M(x) accepts. Since the verifier ignores both the prover and the
work tapes, it is clear that for any P*,, , and t, if z E L, then (P*(s), V(t))(x)
accepts with probability 2/3; and if x % L, then (P*(s), V(t))(z) rejects with
probability 2/3. It follows that (P, V) is a weak interactive proof system for
L. ii

Lemma 5.9: A weak interactive protocol (P, V) is a weak interactive proof
system for a fact V about the prover's work tape and the common input iff

1. for all sufficiently large x and for all 8, we have p(x, s) if x E dom(V);
and

2. dom(Vp) is in BPP.

Proof: Suppose (P, V) is a weak interactive proof system for a fact o about
the prover's work tape and the common input. Fix k and let Nk be the con-
stant given by the soundness and complete conditions for a weak interactive
proof system.

To prove part 1, suppose for some z with IzI _ Nk we have (p(z, a) and
-,o(Z, 8'), and consider the prover P. that ignores its work tape and simulates
the protocol P on work tape s. Since (p(z, s), we know the verifier must accept
in (P(s), V(t))(x) with probability at least 1 - [l - k . Since -o(z, s'), we
know the verifier must accept in (P(s'), V(t))(z) with probability at most
Ixi- k . Notice, however, that the prover P, on work tape s' simulates the
prover P on work tape a, and hence the two distributions (P(a), V(t))(z)
and (P,(.'), V(t))(z) are identical. Consequently, the verifier must accept
with the same probability in both (P(s), V(t))(z) and (Po(.'), V(t))(z), a
contradiction. It follows that, for all sufficiently large z with Iml _ N, we
have z E dom(p) iff o(z, s') for some a' iff W(z, a) for all a.

To prove part 2, let M be the Turing machine that on input x simulates
(P, V)(x) with empty work tapes. Since P and V run in polynomial time,
so does M. By part 1 and the definition of a weak interactive proof system
(P, V), if" >- N> and W E aom(o), then pk(x, ) is satisfied (where e is the
empty string), so (P, V)(x) and hence M(m) accepts with probability 2/3;
and if JxJ _: 1k and z % dom(Wp), then V(z, e) is not satisfied, so (P, V)(z)
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and hence M(z) rejects with probability 2/3. Since we can hardwire into M
whether M should accept or reject x for the finite number of insufficiently
large z's, we can assume M is a BPP Turing machine, and hence that dom(o)
is in BPP.

Conversely, suppose parts 1 and 2 are satisfied. Since dom(Wp) is in BPP,
we know by Lemma 5.8 that there is a weak interactive proof system (P, V)
for dom(p). By part 1, for every k and sufficiently large x, if o(z, a) then
x E dom(Wo) and (P(s), V(t))(x) accepts with probability at least 1 -[zl-k;
and if -W(z,s) then z V dom(Wp) (P*(s), V(t))(z) accepts with probability
at most IzI-k for all provers P*. It follows that (P, V) is a weak interactive
proof system for R as well. 11

Proposition 5.10: (P, V) is an interactive proof satisfying the correctness
condition that the prover can generate a y such that R(z, y) iff (P, V) is a
weak interactive proof system for WR.

Proof: Suppose (P, V) is an interactive proof satisfying the correctness con-
dition that the prover can generate a yj such that R(m, y). We prove that
(P, V) is a weak interactive proof for W0R. For completeness, if W0R(P, x, a)
holds then R(z, a) holds, and (P(.), V(t))(z) accepts with high probability
by the completeness condition for an interactive proof of [TW87], so (P, V)
satisfies the completeness condition for a weak interactive proof of WR. For
soundness, suppose -1W(P*, z, a) holds. Since the definition of an interac-
tive proof of [TW871 guarantees that the soundness condition holds for all
prover protocols P*, it is impossible for the fact WR(P*, x, a) to be false when
P* # P. The only way for WR(P*, X, a) to be false is when P* = P, in which
case the only way for WR(P*, z, a) to be false is if R(z, a) is false. In this
case, the correctness condition guarantees (P(s), V(t))(z) accepts with low
probability, and hence (P, V) satisfies the soundness condition for a weak
interactive proof of Wi.

Conversely, suppose (P, V) is a weak interactive proof for WR. We prove
that (P, V) is an interactive proof satisfying the correctness condition that
the prover can generate a y such that R(z, y). The correctness condition is
clearly satisfied, since -'R(z, a) implies - oW(P, Z, 8), in which case the sound-
ness condition for a weak interactive proof guarantees (P(s), V(t))(z) accepts
with low probability. The completeness condition is also clearly satisfied,
since R(x, a) implies cpR(P, z, a), in which case the completeness condition
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for a weak interactive proof guarantees (P(s), V(t))(C) accepts with high
probability. The definition of WR shows the soundness condition is satisfied
for prover protocols P* 5 P, so consider the protocol P. Since the complete-
ness condition guarantees that (P(s), V(t))() accepts with low probability
when ,(z, a) holds, the trivial generator Mp that simply returns a shows
that the soundness condition is satisfied for the prover protocol P as well.
Thus, (P, V) is an interactive proof the prover can generate a y such that
R(x, y).0
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Chapter 6

Conclusion

Since the work of Halpern and Moses. [HM84], a number of papers have
analyzed problems in distributed computation in terms of knowledge. Our
goal has been to apply knowledge to new problems, and to expand the domain
of problems to which knowledge can be applied.

The work in Chapter 3 shows how powerful reasoning about knowledge
can be. Using the close relationship between common knowledge and si-
multaneity, we have obtained general, unifying results about computation in
unreliable systems. We have identified a general class of problems, including
the well-known consensus and distributed firing squad problems, and shown
how to transform the specification of such problems into protocols that are
optimal in a very strong sense. The state of common knowledge has played
a central role in the derivation of these protocols. In the process of imple-
menting tests for common knowledge we have exposed a number of subtle
differences between variants of the well-known omissions failure model. This
work has shown how knowledge can be used in both protocol design and in
the derivation of nontrivial lower bounds on computational complexity. It
is not at all clear how the observations leading to these results would have
been obtained had we not been thinking about these problems in terms of
knowledge.

While this work shows that reasoning about knowledge can be beneficial,
we have observed that in some contexts the standard definition of knowledge

-:.~L: T_ L1_Adoes not appear to be the most appropl1",t e ,. -- o-. ±n eu second aLifi 0
this thesis, we have studied definitions of knowledge for use in two of these
contexts.

221
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In the context of probabilistic protocols, the standard definition of knowl-
edge does not enable us to capture a notion of confidence that can be useful
when reasoning about such protocols. In Chapter 4, using the framework de-
veloped by Fagin and Halpern [FH88], we have examined various definitions
of probabilistic knowledge that let us capture several different notions of con-
fidence. We have observed that there is no one notion of confidence that is
most appropriate in all contexts. The best way to think about the various
definitions is in terms of betting games and betting against different types
of adversaries. We have shown, for every given adversary, how to construct
the definition of probabilistic knowledge that is provably the best definition
in the context of that particular adversary. We have shown how these defini-
tions can be used to analyze a probabilistic variant of the coordinated attack
problem.

Cryptography is another context in which the standard definition of
knowledge does not capture all relevant aspects of the problems at hand.
This is due primarily to the fact that the standard definition does not allow
us to express the fact that the bounds on an agent's computational powers af-
fect what that agent can know. In Chapter 5 we have shown how the context
of cryptography motivates the definition of practical knowledge, a definition
of knowledge incorporating both probability and limitations on agents' com-
putational powers. We have show how the definition of practical knowledge
can be used to characterize interactive proof systems, and to capture the in-
tuition that a verifier learns essentially nothing as a result of a zero knowledge
proof other than the fact the prover initially sets out to prove. Finally, we
have sketched how it is possible to reason about such proof systems directly
in terms of knowledge, rather than in terms of the operational cryptographic
definitions.

While we feel that our work represents significant progress in the attempt
to extend the standard definitions of knowledge into other contexts, a number
of problems remain. In particular, while we have shown that our definition
of practical knowledge can be useful in contexts where agents' computational
limitations are of interest, it is by no means clear that it is the most appro-
priate definition. In fact, it is not even clear what criteria one should use
when judging the suitability of a definition in this context. Further progress
in this area is of great importance.

While we have noted at the end of each chapter a number of open prob-
lems that remain to be resolved, we note that there are two general areas in
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which knowledge could possibly play a larger role than it has so far. First,
notice that the majority of the results in this thesis have been in the context
of synchronous systems. This is generally true in the literature as a whole.
The role of knowledge in the context of asynchronous systems has been pri-
marily as a tool for proving lower bounds, but not so much as a tool for
the design of new protocols. This is somewhat surprising, since one of the
commonly mentioned motivations for formulating definitions of knowledge in
the first place is to capture informal statements such as "since p has received
message m from q, p knows the task started at q has terminated." Such
statements often arise in the context of communications protocols, for exam-
ple. These protocols are often quite complex, and it would be interesting to
know whether a knowledge-based analysis could make such protocols easier
to understand, and easier to construct:

Finally, we note that it is becoming increasingly important to be able to
reason explicitly about time when designing protocols. For example, timeouts
play an important role in the protocols designed for asynchronous systems.
Designers often explain these protocols as if the processors themselves must
explicitly reason about how their knowledge of the system changes as a re-
sult of whether a given timeout occurs or not. It would be interesting to
understand how to reason about timeouts (and time in general) directly in
terms of formal notions of knowledge. Much remains to be done.
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